Artículos sobre aprendizaje automático en el trading

icon

Creación de robots comerciales basados en inteligencia artificial: integración nativa con Python, operaciones con matrices y vectores, bibliotecas de matemáticas y estadística y mucho más.

Aprenda a usar el aprendizaje automático en el trading. Neuronas, perceptrones, redes convolucionales y recurrentes, modelos predictivos: parta de lo básico y avance hasta construir su propia IA. Aprenderá a entrenar y aplicar redes neuronales para el comercio algorítmico en los mercados financieros.

Nuevo artículo
últimas | mejores
preview
Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)

Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)

Las redes neuronales recurrentes (RNNs, Recurrent Neural Networks) destacan por aprovechar la información del pasado para predecir acontecimientos futuros. Sus notables capacidades predictivas se han aplicado en diversos ámbitos con gran éxito. En este artículo, utilizaremos modelos RNN para predecir tendencias en el mercado de divisas, demostrando su potencial para mejorar la precisión de las predicciones en el comercio de divisas.
preview
Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.
preview
Optimización del búfalo africano - African Buffalo Optimization (ABO)

Optimización del búfalo africano - African Buffalo Optimization (ABO)

El artículo se centra en el algoritmo de optimización del búfalo africano (ABO), un enfoque metaheurístico desarrollado en 2015 y basado en el comportamiento único de estos animales. El artículo detalla los pasos de implementación del algoritmo y su eficacia a la hora de encontrar soluciones a problemas complejos, lo cual lo convierte en una valiosa herramienta en el campo de la optimización.
preview
Inferencia causal en problemas de clasificación de series temporales

Inferencia causal en problemas de clasificación de series temporales

En este artículo, examinaremos la teoría de la inferencia causal utilizando el aprendizaje automático, así como la implementación del enfoque personalizado en Python. La inferencia causal y el pensamiento causal tienen sus raíces en la filosofía y la psicología y desempeñan un papel importante en nuestra comprensión de la realidad.
preview
Redes neuronales en el trading: Transformador con codificación relativa

Redes neuronales en el trading: Transformador con codificación relativa

El aprendizaje autosupervisado puede ser una forma eficaz de analizar grandes cantidades de datos no segmentados. El principal factor de éxito es la adaptación de los modelos a las particularidades de los mercados financieros, lo cual contribuye a mejorar el rendimiento de los métodos tradicionales. Este artículo le presentará un mecanismo alternativo de atención que permitirá considerar las dependencias y relaciones relativas entre los datos de origen.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.
preview
Redes neuronales en el trading: Agente con memoria multinivel (Final)

Redes neuronales en el trading: Agente con memoria multinivel (Final)

Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
preview
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU

Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.
preview
Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales

Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales

La clusterización de K-medias adopta el enfoque de agrupar puntos de datos como un proceso centrado inicialmente en una macro representación del conjunto de datos en la que se aplican centroides de clúster generados aleatoriamente. A continuación, dichos centroides se escalan y ajustan para representar con precisión el conjunto de datos. En el presente artículo, hablaremos de la clusterización y de varios usos de la misma.
preview
Puntuación de propensión (Propensity score) en la inferencia causal

Puntuación de propensión (Propensity score) en la inferencia causal

Este artículo trata el tema del emparejamiento en la inferencia causal. El emparejamiento se usa para emparejar observaciones similares en un conjunto de datos. Esto es necesario para identificar correctamente los efectos causales, eliminando el sesgo. Hoy explicaremos cómo esto ayuda a crear sistemas comerciales basados en el aprendizaje automático que se vuelven más robustos con nuevos datos en los que no se ha entrenado. El papel principal lo asignaremos a la puntuación de propensión, ampliamente utilizada en la inferencia causal.
preview
Computación cuántica y trading: Una nueva mirada a las previsiones de precios

Computación cuántica y trading: Una nueva mirada a las previsiones de precios

En el artículo analizaremos un enfoque innovador para predecir los movimientos de precios en los mercados financieros utilizando la computación cuántica. La atención se centrará en la aplicación del algoritmo Quantum Phase Estimation (QPE) para encontrar precursores de patrones de precios, lo que permitirá acelerar considerablemente el proceso de análisis de los datos de mercado.
preview
Algoritmo de Algas Artificiales (Artificial Algae Algorithm, AAA)

Algoritmo de Algas Artificiales (Artificial Algae Algorithm, AAA)

El artículo considera el Algoritmo de Algas Artificiales (Artificial Algae Algorithm, AAA) basado en procesos biológicos característicos de las microalgas. El algoritmo incluye movimiento en espiral, proceso evolutivo y adaptación, lo que le permite resolver problemas de optimización. El artículo analiza en profundidad los principios de funcionamiento del AAA y su potencial en la modelización matemática, destacando la conexión entre la naturaleza y las soluciones algorítmicas.
preview
Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.
preview
Red neuronal en la práctica: Pseudo inversa (II)

Red neuronal en la práctica: Pseudo inversa (II)

Por esta razón, dado que estos artículos tienen un propósito didáctico y no están enfocados en mostrar cómo implementar una funcionalidad específica, haremos algo un poco diferente aquí. En lugar de mostrar cómo implementar la factorización para obtener la inversa de una matriz, nos centraremos en cómo factorizar la pseudo inversa. El motivo es que no tiene sentido mostrar cómo factorizar algo de forma genérica si podemos hacerlo de manera especializada. Y mejor aún, será algo que podrás entender mucho más profundamente, comprendiendo por qué las cosas son como son. Así que veamos por qué, con el tiempo, un hardware sustituye a un software.
preview
Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)

Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)

Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.
preview
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)

Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)

Hoy le propongo familiarizarse con el framework MacroHFT, que aplica el aprendizaje por refuerzo dependiente del contexto y la memoria para mejorar las decisiones en el comercio de criptodivisas de alta frecuencia utilizando datos macroeconómicos y agentes adaptativos.
preview
Red neuronal en la práctica: Esbozando una neurona

Red neuronal en la práctica: Esbozando una neurona

En este artículo, vamos construir una neurona básica. Aunque parezca algo simple, y muchos piensen que el código es totalmente trivial y sin propósito, quiero que tú, querido lector y entusiasta del tema de redes neuronales, te diviertas explorando este sencillo esbozo de una neurona. No tengas miedo de modificar el código para entenderlo mejor.
preview
Redes neuronales en el trading: Segmentación guiada (Final)

Redes neuronales en el trading: Segmentación guiada (Final)

Continuamos el trabajo iniciado en el artículo anterior sobre la construcción del marco RefMask3D usando herramientas MQL5. Este marco está diseñado para explorar de forma exhaustiva la interacción multimodal y analizar las características de una nube de puntos, seguida de la identificación del objeto de destino partiendo de la descripción proporcionada en lenguaje natural.
preview
Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.
preview
Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

En el aprendizaje offline, utilizamos un conjunto de datos fijo, lo que limita la cobertura de la diversidad del entorno. Durante el proceso de aprendizaje, nuestro Agente puede generar acciones fuera de dicho conjunto. Si no hay retroalimentación del entorno, la corrección de las evaluaciones de tales acciones será cuestionable. Mantener la política del Agente dentro de la muestra de entrenamiento se convierte así en un aspecto importante para garantizar la solidez del entrenamiento. De eso hablaremos en este artículo.
preview
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte X): ¿Puede la IA impulsar el MACD?

Reimaginando las estrategias clásicas en MQL5 (Parte X): ¿Puede la IA impulsar el MACD?

Únase a nosotros mientras analizamos empíricamente el indicador MACD para comprobar si la aplicación de la IA a una estrategia, incluyendo el indicador, produciría alguna mejora en nuestra precisión a la hora de pronosticar el EURUSD. Evaluamos simultáneamente si el indicador en sí mismo es más fácil de predecir que el precio, así como si el valor del indicador es predictivo de los niveles de precios futuros. Le proporcionaremos la información que necesita para decidir si debe considerar invertir su tiempo en integrar el MACD en sus estrategias de trading con IA.
preview
Aprendizaje automático y Data Science (Parte 31): Uso de los modelos de inteligencia artificial CatBoost

Aprendizaje automático y Data Science (Parte 31): Uso de los modelos de inteligencia artificial CatBoost

Los modelos de IA CatBoost han ganado popularidad masiva recientemente entre las comunidades de aprendizaje automático debido a su precisión predictiva, eficiencia y robustez ante conjuntos de datos dispersos y difíciles. En este artículo, vamos a discutir en detalle cómo implementar este tipo de modelos en un intento de vencer al mercado de divisas.
preview
Algoritmo de optimización basado en la migración animal (Animal Migration Optimization, AMO)

Algoritmo de optimización basado en la migración animal (Animal Migration Optimization, AMO)

El artículo está dedicado al algoritmo AMO, que modela la migración estacional de los animales en busca de condiciones óptimas para la vida y la reproducción. Las principales características de AMO incluyen el uso de vecindad topológica y un mecanismo de actualización probabilística, lo que lo hace fácil de implementar y flexible para diversas tareas de optimización.
preview
Algoritmo de optimización basado en ecosistemas artificiales —  Artificial Ecosystem-based Optimization (AEO)

Algoritmo de optimización basado en ecosistemas artificiales — Artificial Ecosystem-based Optimization (AEO)

El artículo analiza el algoritmo metaheurístico AEO que modela las interacciones entre los componentes del ecosistema mediante la creación de una población inicial de soluciones y la aplicación de estrategias de actualización adaptativas, y detalla las etapas de funcionamiento del AEO, incluidas las fases de consumo y descomposición, así como diversas estrategias de comportamiento de los agentes. El artículo presenta las peculiaridades y ventajas de este algoritmo.
preview
Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

La regresión de vectores de soporte es una forma idealista de encontrar una función o "hiperplano" que describa mejor la relación entre dos conjuntos de datos. Intentamos aprovechar esto en la previsión de series de tiempo dentro de clases personalizadas del asistente MQL5.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Continuamos nuestro análisis del sistema comercial híbrido StockFormer, que combina codificación predictiva y algoritmos de aprendizaje por refuerzo para el análisis de series temporales financieras. El sistema se basa en tres ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) que permite identificar patrones complejos y relaciones entre activos. Ya nos hemos familiarizado con los aspectos teóricos del framework e implementado los mecanismos de DMH-Attn, así que hoy hablaremos sobre la arquitectura de los modelos y su entrenamiento.
preview
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (Final)

Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (Final)

Continuamos nuestro estudio de los modelos híbridos de secuencias de grafos (GSM++) que integran las ventajas de distintas arquitecturas, proporcionando una gran precisión de análisis y una asignación eficiente de los recursos computacionales. Estos modelos revelan eficazmente patrones ocultos, reduciendo el impacto del ruido del mercado y mejorando la calidad de las previsiones.
preview
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

El entrenamiento de los modelos de Transformer requiere grandes cantidades de datos y suele ser difícil debido a la escasa capacidad de generalización de los modelos en muestras pequeñas. El framework SAMformer ayuda a resolver este problema evitando los mínimos locales malos, mejorando la eficacia de los modelos incluso con muestras de entrenamiento limitadas.
preview
Analizamos el código binario de los precios en bolsa (Parte I): Una nueva visión del análisis técnico

Analizamos el código binario de los precios en bolsa (Parte I): Una nueva visión del análisis técnico

En este artículo presentaremos un enfoque innovador del análisis técnico basado en la conversión de los movimientos de los precios en código binario. El autor demostrará cómo diversos aspectos del comportamiento de los mercados -desde simples movimientos de precios hasta patrones complejos- pueden codificarse en una secuencia de ceros y unos.
preview
Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)

Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)

Una forma de mejorar la eficacia del proceso de aprendizaje y la convergencia de los modelos es mejorar los métodos de optimización. Adam-mini es un método de optimización adaptativa desarrollado para mejorar el algoritmo Adam básico.
preview
Métodos de optimización de la biblioteca ALGLIB (Parte II)

Métodos de optimización de la biblioteca ALGLIB (Parte II)

En este artículo seguiremos analizando los métodos restantes de optimización de la biblioteca ALGLIB, prestando especial atención a su comprobación con funciones multivariantes complejas. Esto nos permitirá no solo evaluar el rendimiento de cada algoritmo, sino también identificar sus puntos fuertes y débiles en diferentes condiciones.
preview
Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios

Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios

En este artículo nos familiarizaremos con el método Mask-Attention-Free Transformer (MAFT) y su aplicación en el ámbito del trading. A diferencia de los Transformers tradicionales, que requieren el enmascaramiento de los datos durante el procesamiento de la secuencia, el MAFT optimiza el proceso de atención eliminando la necesidad de enmascaramiento, lo que mejora significativamente la eficiencia computacional.
preview
Análisis del impacto del clima en las divisas de los países agrícolas usando Python

Análisis del impacto del clima en las divisas de los países agrícolas usando Python

¿Cómo se relacionan el clima y el mercado de divisas? La teoría económica clásica no ha reconocido durante mucho tiempo la influencia de estos factores en el comportamiento del mercado. Pero ahora las cosas han cambiado. Hoy intentaremos encontrar conexiones entre el estado del tiempo y la posición de las divisas agrarias en el mercado.
preview
Algoritmo de agujero negro — Black Hole Algorithm (BHA)

Algoritmo de agujero negro — Black Hole Algorithm (BHA)

El algoritmo de agujero negro (BHA) utiliza los principios de la gravedad de los agujeros negros para optimizar las soluciones. En este artículo, analizaremos cómo el BHA atrae las mejores soluciones evitando los extremos locales, y por qué este algoritmo se ha convertido en una poderosa herramienta para resolver problemas complejos. Descubra cómo ideas sencillas pueden dar lugar a resultados impresionantes en el mundo de la optimización.
preview
Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional

Las máquinas de Boltzmann restringidas (RBM, Restrictive Boltzmann Machines) son, en el nivel básico, una red neuronal de dos capas que es competente en la clasificación no supervisada a través de la reducción de la dimensionalidad. Tomamos sus principios básicos y examinamos si lo rediseñamos y entrenamos de forma poco ortodoxa, podríamos obtener un filtro de señal útil.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte IX): Análisis de múltiples marcos temporales (II)

Reimaginando las estrategias clásicas en MQL5 (Parte IX): Análisis de múltiples marcos temporales (II)

En la discusión de hoy, examinamos la estrategia de análisis de múltiples marcos temporales para aprender en qué marco temporal nuestro modelo de IA funciona mejor. Nuestro análisis nos lleva a concluir que los marcos temporales mensuales y horarios producen modelos con tasas de error relativamente bajas en el par EURUSD. Utilizamos esto para nuestro beneficio y creamos un algoritmo comercial que hace predicciones de IA en el marco de tiempo mensual y ejecuta sus operaciones en el marco de tiempo horario.
preview
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

El artículo estudiará formas de codificar los datos de origen en un espacio latente hiperbólico mediante procesos de difusión anisotrópica. Esto ayudará a preservar con mayor precisión las características topológicas de la situación actual del mercado y mejorará la calidad de su análisis.
preview
Clase básica de algoritmos de población como base para una optimización eficaz

Clase básica de algoritmos de población como base para una optimización eficaz

El presente material supone un intento único de investigación para combinar una variedad de algoritmos de población en una sola clase y simplificar la aplicación de técnicas de optimización. Este enfoque no solo descubre oportunidades para el desarrollo de nuevos algoritmos, incluidas variantes híbridas, sino que también crea un banco de pruebas básico y versátil. Este banco se convertirá así en una herramienta clave para seleccionar el algoritmo óptimo según un problema específico.