Algoritmos de optimización de la población: Algoritmo híbrido de optimización de forrajeo bacteriano con algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
Este artículo presenta un nuevo enfoque para resolver problemas de optimización combinando las ideas de los algoritmos de optimización de forrajeo bacteriano (BFO) y las técnicas utilizadas en el algoritmo genético (GA) en un algoritmo híbrido BFO-GA. Dicha técnica utiliza enjambres bacterianos para buscar una solución óptima de manera global y operadores genéticos para refinar los óptimos locales. A diferencia del BFO original, ahora las bacterias pueden mutar y heredar genes.
Perspectivas bursátiles a través del volumen: más allá de los gráficos OHLC
Sistema de negociación algorítmica que combina el análisis de volumen con técnicas de aprendizaje automático, concretamente redes neuronales LSTM. A diferencia de los enfoques tradicionales de negociación, que se centran principalmente en los movimientos de los precios, este sistema hace hincapié en los patrones de volumen y sus derivados para predecir los movimientos del mercado. La metodología incorpora tres componentes principales: análisis de derivadas de volumen (derivadas primera y segunda), predicciones LSTM para patrones de volumen e indicadores técnicos tradicionales.
Modelos ocultos de Markov para la predicción de la volatilidad siguiendo tendencias
Los modelos ocultos de Markov (Hidden Markov Models, HMM) son potentes herramientas estadísticas que identifican los estados subyacentes del mercado mediante el análisis de los movimientos observables de los precios. En el ámbito bursátil, los HMM mejoran la predicción de la volatilidad y proporcionan información para las estrategias de seguimiento de tendencias mediante la modelización y la anticipación de los cambios en los regímenes de mercado. En este artículo, presentaremos el procedimiento completo para desarrollar una estrategia de seguimiento de tendencias que utiliza HMM para predecir la volatilidad como filtro.
Algoritmo de viaje evolutivo en el tiempo — Time Evolution Travel Algorithm (TETA)
Se trata de un algoritmo propio. En este artículo, le presentaremos el Algoritmo de viaje evolutivo en el tiempo (TETA), inspirado en el concepto de universos paralelos y flujos temporales. La idea básica del algoritmo es que, si bien no es posible viajar en el tiempo en el sentido habitual, podemos elegir una secuencia de acontecimientos que generen realidades distintas.
Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)
El análisis directo de nubes de puntos evita alcanza un tamaño de datos innecesario y mejora la eficacia de los modelos en tareas de clasificación y segmentación. Estos enfoques demuestran un alto rendimiento y solidez frente a las perturbaciones de los datos de origen.
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)
Hoy le presentamos el StockFormer, un sistema comercial híbrido que combina algoritmos de codificación predictiva y de aprendizaje por refuerzo (RL). El framework utiliza 3 ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) integrado que mejora el módulo de atención vainilla gracias a un bloque Feed-Forward multicabeza que permite captar diversos patrones de series temporales en diferentes subespacios.
Clústeres de series temporales en inferencia causal
Los algoritmos de agrupamiento en el aprendizaje automático son importantes algoritmos de aprendizaje no supervisado que pueden dividir los datos originales en grupos con observaciones similares. Utilizando estos grupos, puede analizar el mercado de un grupo específico, buscar los grupos más estables utilizando nuevos datos y hacer inferencias causales. El artículo propone un método original de agrupación de series temporales en Python.
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad
En la segunda parte del artículo pasaremos a la aplicación práctica del algoritmo BSO, realizaremos tests con funciones de prueba y compararemos la eficacia de BSO con otros métodos de optimización.
Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.
En esta serie de artículos, analizamos estrategias de trading clásicas utilizando algoritmos modernos para determinar si podemos mejorar la estrategia utilizando IA. En el artículo de hoy, retomamos un enfoque clásico para operar con el SP500 utilizando la relación que guarda con los bonos del Tesoro estadounidense.
Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias
Desde los primeros artículos sobre el aprendizaje por refuerzo, hemos tocado de un modo u otro dos problemas: la exploración del entorno y la definición de la función de recompensa. Los artículos más recientes se han centrado en el problema de la exploración en el aprendizaje offline. En este artículo, queremos presentar un algoritmo cuyos autores han abandonado por completo la función de recompensa.
Redes neuronales: así de sencillo (Parte 91): Previsión en el dominio de la frecuencia (FreDF)
Vamos a continuar con el tema del análisis y la previsión de series temporales en el dominio de la frecuencia. En este artículo, introduciremos un nuevo método de predicción en el dominio de la frecuencia que puede añadirse a muchos de los algoritmos que hemos estudiado anteriormente.
Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa
Seguimos analizando los funtores y cómo se pueden implementar utilizando redes neuronales artificiales. Dejaremos temporalmente el enfoque que implica el pronóstico de la volatilidad e intentaremos implementar nuestra propia clase de señales para establecer señales de entrada y salida para una posición.
Obtenga una ventaja sobre cualquier mercado (Parte III): Índice de gasto de Visa
En el mundo de los macrodatos, hay millones de conjuntos de datos alternativos que pueden mejorar nuestras estrategias de negociación. En esta serie de artículos le ayudaremos a identificar los conjuntos de datos públicos más informativos.
Un algoritmo de selección de características que utiliza aprendizaje basado en energía en MQL5 puro
En este artículo presentamos la implementación de un algoritmo de selección de características descrito en un artículo académico titulado "FREL: Un algoritmo de selección de características estable", llamado Ponderación de características como aprendizaje regularizado basado en energía.
Red neuronal en la práctica: Mínimos cuadrados
Aquí en este artículo, veremos algunas cosas, entre ellas: Cómo muchas veces las fórmulas matemáticas parecen más complicadas cuando las miramos, que cuando las implementamos en código. Además de este hecho, también se mostrará cómo puedes ajustar el cuadrante del gráfico, así como un problema curioso que puede suceder en tu código MQL5. Algo que sinceramente no sé cómo explicar, ya que no lo entendí. A pesar de eso, mostraré cómo corregirlo en el código.
Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional
Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores
Los modelos basados en la arquitectura de transformadores demuestran una gran eficacia, pero su uso se complica por el elevado coste de los recursos tanto en la fase de formación como durante el funcionamiento. En este artículo, propongo familiarizarse con los algoritmos que permiten reducir el uso de memoria de tales modelos.
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales
La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP
Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.
Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo
En este artículo, nos sumergiremos en el mundo de la hibridación de algoritmos de optimización analizando tres tipos clave: la mezcla de estrategias y la hibridación secuencial y paralela. Asimismo, realizaremos una serie de experimentos combinando y probando los algoritmos de optimización correspondientes.
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados
En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.
Codificación ordinal para variables nominales
En este artículo, analizamos y demostramos cómo convertir predictores nominales en formatos numéricos adecuados para algoritmos de aprendizaje automático, utilizando tanto Python como MQL5.
De Python a MQL5: Un viaje hacia los sistemas de trading inspirados en la cuántica
El artículo analiza el desarrollo de un sistema de negociación inspirado en la cuántica, pasando de un prototipo en Python a una implementación en MQL5 para la negociación en el mundo real. El sistema utiliza principios de computación cuántica, como la superposición y el entrelazamiento, para analizar los estados del mercado, aunque funciona en ordenadores clásicos utilizando simuladores cuánticos. Las características principales incluyen un sistema de tres qubits para analizar ocho estados del mercado simultáneamente, períodos de revisión de 24 horas y siete indicadores técnicos para el análisis del mercado. Aunque los índices de precisión puedan parecer modestos, proporcionan una ventaja significativa cuando se combinan con estrategias adecuadas de gestión de riesgos.
Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA
¿Podemos beneficiarnos de la estacionalidad al crear modelos para Deep Learning con Python? ¿Ayuda el filtrado de datos para los modelos ONNX a obtener mejores resultados? ¿Qué periodo de tiempo debemos utilizar? Trataremos todo esto a lo largo de este artículo.
Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)
Hoy proponemos al lector introducir el método del transformador vectorial jerárquico (HiVT), desarrollado para la previsión rápida y precisa de series temporales multimodales.
Integración de MQL5 con paquetes de procesamiento de datos (Parte 3): Visualización mejorada de datos
En este artículo, realizaremos una visualización de datos mejorada que va más allá de los gráficos básicos, incorporando características como interactividad, datos en capas y elementos dinámicos, lo que permite a los operadores explorar tendencias, patrones y correlaciones de manera más eficaz.
Redes neuronales en el trading: Transformador contrastivo de patrones (Final)
En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.
Reimaginando las estrategias clásicas en MQL5 (Parte XI): Cruce de medias móviles (II)
Las medias móviles y el oscilador estocástico podrían utilizarse para generar señales de trading que sigan la tendencia. Sin embargo, estas señales solo se observarán después de que se haya producido la acción del precio. Podemos superar eficazmente este retraso inherente a los indicadores técnicos utilizando la inteligencia artificial. Este artículo le enseñará cómo crear un asesor experto totalmente autónomo impulsado por IA de una manera que pueda mejorar cualquiera de sus estrategias de trading existentes. Incluso la estrategia comercial más antigua posible se puede mejorar.
Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)
El aprendizaje contrastivo (Contrastive learning) supone un método de aprendizaje de representación no supervisado. Su objetivo consiste en entrenar un modelo para que destaque las similitudes y diferencias entre los conjuntos de datos. En este artículo, hablaremos del uso de enfoques de aprendizaje contrastivo para investigar las distintas habilidades del Actor.
Redes neuronales en el trading: Agente con memoria multinivel (Final)
Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida
La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
Algoritmo de optimización de Escalera Real - Royal Flush Optimisation (RFO)
El algoritmo Royal Flush Optimization del autor ofrece una nueva perspectiva en la resolución de problemas de optimización sustituyendo la clásica codificación binaria de los algoritmos genéticos por un enfoque basado en sectores e inspirado en los principios del póquer. El RFO demuestra cómo la simplificación de los principios básicos puede dar lugar a un método de optimización eficaz y práctico. El artículo presenta un análisis detallado del algoritmo y los resultados de las pruebas.
El papel de la calidad del generador de números aleatorios en la eficiencia de los algoritmos de optimización
En este artículo, analizaremos el generador de números aleatorios Mersenne Twister y lo compararemos con el estándar en MQL5. También determinaremos la influencia de la calidad del generador de números aleatorios en los resultados de los algoritmos de optimización.
Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)
En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.
Redes neuronales en el trading: Transformador con codificación relativa
El aprendizaje autosupervisado puede ser una forma eficaz de analizar grandes cantidades de datos no segmentados. El principal factor de éxito es la adaptación de los modelos a las particularidades de los mercados financieros, lo cual contribuye a mejorar el rendimiento de los métodos tradicionales. Este artículo le presentará un mecanismo alternativo de atención que permitirá considerar las dependencias y relaciones relativas entre los datos de origen.
Optimización con el juego del caos — Game Optimization (CGO)
Hoy presentamos el nuevo algoritmo metaheurístico de Chaos Game Optimisation (CGO), que demuestra una capacidad única para mantener una alta eficiencia al trabajar con problemas de alta dimensionalidad. A diferencia de la mayoría de los algoritmos de optimización, el CGO no solo no pierde rendimiento, sino que a veces incluso lo aumenta cuando se escala el problema, lo cual supone su característica clave.
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización
En la primera parte de este artículo, nos sumergiremos en el mundo de las reacciones químicas y descubriremos un nuevo enfoque de la optimización. La optimización de reacciones químicas (Chemical Reaction Optimization, CRO) utiliza principios derivados de las leyes de la termodinámica para lograr resultados eficientes. Desvelaremos los secretos de la descomposición, la síntesis y otros procesos químicos que se convirtieron en la base de este innovador método.
Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)
En el aprendizaje offline, utilizamos un conjunto de datos fijo, lo que limita la cobertura de la diversidad del entorno. Durante el proceso de aprendizaje, nuestro Agente puede generar acciones fuera de dicho conjunto. Si no hay retroalimentación del entorno, la corrección de las evaluaciones de tales acciones será cuestionable. Mantener la política del Agente dentro de la muestra de entrenamiento se convierte así en un aspecto importante para garantizar la solidez del entrenamiento. De eso hablaremos en este artículo.