Experimentos con redes neuronales (Parte 6): El perceptrón como herramienta autosuficiente de predicción de precios
Ejemplo de utilización de un perceptrón como herramienta autónoma de predicción de precios. En el artículo exploraremos los conceptos generales y veremos un sencillo asesor experto ya preparado, así como los resultados de su optimización.
Algoritmos de optimización de la población: Algoritmos de estrategias evolutivas (Evolution Strategies, (μ,λ)-ES y (μ+λ)-ES)
En este artículo, analizaremos un grupo de algoritmos de optimización conocidos como "estrategias evolutivas" (Evolution Strategies o ES). Se encuentran entre los primeros algoritmos basados en poblaciones que usan principios evolutivos para encontrar soluciones óptimas. Hoy le presentaremos los cambios introducidos en las variantes clásicas de ES y revisaremos la función de prueba y la metodología del banco de pruebas para los algoritmos.
Redes neuronales: así de sencillo (Parte 34): Función cuantílica totalmente parametrizada
Seguimos analizando algoritmos de aprendizaje Q distribuidos. En artículos anteriores hemos analizado los algoritmos de aprendizaje Q distribuido y cuantílico. En el primero, enseñamos las probabilidades de los rangos de valores dados. En el segundo, enseñamos los rangos con una probabilidad determinada. Tanto en el primer algoritmo como en el segundo, usamos el conocimiento a priori de una distribución y enseñamos la otra. En el presente artículo, veremos un algoritmo que permite al modelo aprender ambas distribuciones.
Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5
En este artículo, seguiremos estudiando los fundamentos de la programación MQL5. Hoy veremos los arrays, las funciones definidas por el usuario, los preprocesadores y el procesamiento de eventos. Para una mayor claridad, todos los pasos de cada explicación irán acompañado de un código. Esta serie de artículos sienta las bases para el aprendizaje de MQL5, prestando especial atención a la explicación de cada línea de código.
Aprendizaje automático y Data Science (Parte 13): Analizamos el mercado financiero usando el análisis de componentes principales (ACP)
Hoy intentaremos mejorar cualitativamente el análisis de los mercados financieros utilizando el Análisis de Componentes Principales (ACP). Asimismo, aprenderemos cómo este método puede ayudarnos a identificar patrones ocultos en los datos, detectar tendencias ocultas del mercado y optimizar las estrategias de inversión. En este artículo veremos cómo el método de ACP aporta una nueva perspectiva al análisis de datos financieros complejos, ayudándonos a ver ideas que hemos pasado por alto con los enfoques tradicionales. ¿La aplicación del método ACP en estos mercados financieros ofrece una ventaja competitiva y ayuda a ir un paso por delante?
Algoritmos de optimización de la población: Algoritmo de optimización de ballenas (Whale Optimization Algorithm, WOA)
El algoritmo de optimización de ballenas (WOA) es un algoritmo metaheurístico inspirado en el comportamiento y las estrategias de caza de las ballenas jorobadas. La idea básica del WOA es imitar el método de alimentación denominado "red de burbujas", en el que las ballenas crean burbujas alrededor de la presa para atacarla después en espiral.
Aprendizaje automático y Data Science (Parte 14): Aplicación de los mapas de Kohonen a los mercados
¿Quiere encontrar un nuevo enfoque comercial que lo ayude a orientarse en mercados complejos y en cambio constante? Eche un vistazo a los mapas de Kohonen, una forma innovadora de redes neuronales artificiales que puede ayudarle a descubrir patrones y tendencias ocultos en los datos del mercado. En este artículo, veremos cómo funcionan los mapas de Kohonen y cómo usarlos para desarrollar estrategias comerciales efectivas. Creo que este nuevo enfoque resultará de interés tanto a los tráders experimentados como para los principiantes.
Redes neuronales: así de sencillo (Parte 18): Reglas asociativas
Como continuación de esta serie, hoy presentamos otro tipo de tarea relacionada con los métodos de aprendizaje no supervisado: la búsqueda de reglas asociativas. Este tipo de tarea se usó por primera vez en el comercio minorista para analizar las cestas de la compra. En este artículo, hablaremos de las posibilidades que ofrece el uso de dichos algoritmos en el trading.
Modelos de regresión de la biblioteca Scikit-learn y su exportación a ONNX
En este artículo exploraremos la aplicación de modelos de regresión del paquete Scikit-learn e intentaremos convertirlos al formato ONNX y utilizaremos los modelos resultantes dentro de programas MQL5. Adicionalmente, compararemos la precisión de los modelos originales con sus versiones ONNX tanto para precisión flotante como doble. Además, examinaremos la representación ONNX de los modelos de regresión con el fin de comprender mejor su estructura interna y sus principios de funcionamiento.
Red neuronal en la práctica: Recta secante
Como se explicó en la parte teórica, necesitamos usar regresiones lineales y derivadas cuando trabajamos con redes neuronales. ¿Pero por qué? La razón es que la regresión lineal es una de las fórmulas más simples que existen. Básicamente, una regresión lineal es solo una función afín. Sin embargo, cuando hablamos de redes neuronales, no nos interesan los efectos de la recta de regresión lineal. Lo que nos interesa es la ecuación que genera dicha recta. La recta generada poco importa. ¿Pero sabes cuál es la ecuación principal que hay que comprender? Si no, lee este artículo para empezar a comprenderlo.
Sistema de arbitraje de alta frecuencia en Python con MetaTrader 5
Hoy vamos a crear un sistema de arbitraje legal a los ojos de los brókeres, que creará miles de precios sintéticos en el mercado Fórex, los analizará y negociará con éxito para obtener beneficios.
Experimentos con redes neuronales (Parte 3): Uso práctico
Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
Redes neuronales: así de sencillo (Parte 35): Módulo de curiosidad intrínseca (Intrinsic Curiosity Module)
Seguimos analizando los algoritmos de aprendizaje por refuerzo. Todos los algoritmos que hemos estudiado hasta ahora requerían la creación de una política de recompensas tal que el agente pudiera evaluar cada una de sus acciones en cada transición de un estado del sistema a otro, pero este enfoque resulta bastante artificial. En la práctica, existe cierto tiempo de retraso entre la acción y la recompensa. En este artículo, le sugerimos que se familiarice con un algoritmo de entrenamiento de modelos que puede funcionar con varios retrasos de tiempo desde la acción hasta la recompensa.
Algoritmos de optimización de la población: Algoritmo de gotas de agua inteligentes (Intelligent Water Drops, IWD)
El artículo analiza un interesante algoritmo, las gotas de agua inteligentes, IWD, presente en la naturaleza inanimada, que simula el proceso de formación del cauce de un río. Las ideas de este algoritmo han permitido mejorar significativamente el anterior líder de la clasificación, el SDS, y el nuevo líder (SDSm modificado); como de costumbre, se puede encontrar en el archivo del artículo.
Redes neuronales: así de sencillo (Parte 85): Predicción multidimensional de series temporales
En este artículo presentaremos un nuevo método complejo de previsión de series temporales que combina armoniosamente las ventajas de los modelos lineales y los transformadores.
Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures
En este artículo, crearemos un modelo de bosque aleatorio en Python, entrenaremos el modelo y lo guardaremos como un pipeline ONNX con preprocesamiento de datos. Además, usaremos el modelo en el terminal MetaTrader 5.
Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas
Los modelos de aprendizaje automático vienen con varios parámetros ajustables. En esta serie de artículos, exploraremos cómo personalizar sus modelos de IA para que se adapten a su mercado específico utilizando la biblioteca SciPy.
Aprendizaje automático y Data Science (Parte 26): La batalla definitiva en la previsión de series temporales: redes neuronales LSTM frente a GRU
En el artículo anterior, hablamos de una RNN sencilla que, a pesar de su incapacidad para comprender las dependencias a largo plazo en los datos, fue capaz de realizar una estrategia rentable. En este artículo hablaremos tanto de la memoria a largo plazo (LSTM) como de la unidad recurrente controlada (GRU). Estas dos se introdujeron para superar las deficiencias de una RNN simple y ser más astuta que ella.
Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5
Continuamos analizando el método de clusterización. En este artículo, crearemos una nueva clase CKmeans para implementar uno de los métodos de clusterización de k-medias más extendidos. Según los resultados de la prueba, el modelo ha podido identificar alrededor de 500 patrones.
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios
Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".
Añadimos un LLM personalizado a un robot comercial (Parte 2): Ejemplo de despliegue del entorno
Los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial que evoluciona rápidamente, por lo que debemos plantearnos cómo integrar unos LLM potentes en nuestro comercio algorítmico. A la mayoría de la gente le resulta difícil adaptar estos modelos a sus necesidades, implantarlos de forma local y luego aplicarlos al trading algorítmico. En esta serie de artículos abordaremos un enfoque paso a paso para lograr este objetivo.
Desarrollo de un robot en Python y MQL5 (Parte 2): Selección, creación y entrenamiento de modelos, simulador personalizado en Python
Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En el presente artículo, resolveremos el problema de la selección y el entrenamiento de modelos, la prueba de los mismos, la aplicación de la validación cruzada, la búsqueda en cuadrícula y el problema del ensamblaje de modelos.
Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa
En el artículo anterior, comenzamos a estudiar las redes neuronales con conexión directa, pero hay algunas cosas que quedaron sin resolver. Una de ellas es el diseño de la arquitectura. Por ello, en el presente artículo, veremos cómo diseñar una red neuronal flexible, teniendo en cuenta los datos de entrada, el número de capas ocultas y los nodos de cada red.
Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte II
En este artículo, analizaremos el algoritmo genético binario (BGA), que modela los procesos naturales que ocurren en el material genético de los seres vivos en la naturaleza.
Algoritmos de optimización de la población: Algoritmo del mono (Monkey algorithm, MA)
En este artículo analizaremos el algoritmo de optimización "Algoritmo del Mono" (MA). La capacidad de estos ágiles animales para superar obstáculos complicados y alcanzar las copas de los árboles más inaccesibles fue la base de la idea del algoritmo MA.
Características del Wizard MQL5 que debe conocer (Parte 04): Análisis Discriminante Lineal
El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, trataremos de demostrar que el Wizard MQL5 es la verdadera columna vertebral para un tráder en su búsqueda.
Algoritmos de optimización de la población: Algoritmo de salto de rana aleatorio (Shuffled Frog-Leaping, SFL)
El artículo presenta una descripción detallada del algoritmo de salto de rana aleatorio (SFL) y sus capacidades para resolver problemas de optimización. El algoritmo SFL se inspira en el comportamiento de las ranas en su entorno natural y ofrece un enfoque innovador para la optimización de características. El algoritmo SFL supone una herramienta eficaz y flexible que puede gestionar una gran variedad de tipos de datos y alcanzar soluciones óptimas.
Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad
Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.
Experimentos con redes neuronales (Parte 7): Transmitimos indicadores
Ejemplos de transmisión de indicadores a un perceptrón. En el artículo ofreceremos conceptos generales y presentaremos un asesor listo para usar muy simple, así como los resultados de su optimización y sus pruebas forward.
Redes neuronales: así de sencillo (Parte 30): Algoritmos genéticos
En el artículo de hoy, hablaremos de un método de aprendizaje ligeramente distinto. Podríamos decir que lo hemos tomado de la teoría de la evolución de Darwin. Probablemente resulte menos controlable que los métodos anteriormente mencionados, pero también nos permite entrenar modelos indiferenciados.
Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias
Continuamos la conversación sobre el uso de la representación lineal por partes de las series temporales iniciada en el artículo anterior. Y hoy hablaremos de la combinación de este método con otros enfoques del análisis de series temporales para mejorar la calidad de la previsión de la tendencia del movimiento de precios.
Ejemplo de nuevo Indicador y LSTM condicional
Este artículo explora el desarrollo de un Asesor Experto (Expert Advisor, EA) para trading automatizado que combina el análisis técnico con predicciones de aprendizaje profundo.
Características del Wizard MQL5 que debe conocer (Parte 3): Entropía de Shannon
El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder.
Ejemplo de un conjunto de modelos ONNX en MQL5
ONNX (Open Neural Network eXchange) es un estándar abierto para representar redes neuronales. En este artículo, le mostraremos la posibilidad de usar dos modelos ONNX simultáneamente en un asesor experto.
Añadimos un LLM personalizado a un robot comercial (Parte 1): Desplegando el equipo y el entorno
Los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial que evoluciona rápidamente, por lo que debemos plantearnos cómo integrar unos LLM potentes en nuestro comercio algorítmico. A la mayoría de la gente le resulta difícil personalizar estos potentes modelos para adaptarlos a sus necesidades, implantarlos de forma local y luego aplicarlos al trading algorítmico. En esta serie de artículos abordaremos un enfoque paso a paso para lograr este objetivo.
Reimaginando las estrategias clásicas (Parte III): Predicción de máximos crecientes y mínimos decrecientes
En esta serie de artículos, analizaremos empíricamente las estrategias comerciales clásicas para ver si podemos mejorarlas utilizando IA. En la discusión de hoy, intentamos predecir máximos más altos y mínimos más bajos utilizando el modelo de análisis discriminante lineal.
Redes neuronales: así de sencillo (Parte 46): Aprendizaje por refuerzo dirigido a objetivos (GCRL)
En el artículo de hoy, nos familiarizaremos con otra tendencia en el campo del aprendizaje por refuerzo. Se denomina aprendizaje por refuerzo dirigido a objetivos (Goal-conditioned reinforcement learning, GCRL). En este enfoque, el agente se entrenará para alcanzar diferentes objetivos en determinados escenarios.
Elaboración de previsiones económicas: el potencial de Python
¿Cómo utilizar los datos económicos del Banco Mundial para crear previsiones? ¿Qué ocurre si se combinan modelos de IA y economía?
Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)
Hoy le proponemos introducir un algoritmo bastante nuevo, el Stochastic Marginal Actor-Critic (SMAC), que permite la construcción de políticas de variable latente dentro de un marco de maximización de la entropía.
Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)
En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.