Artículos sobre automatización de sistemas comerciales en el lenguaje MQL5

icon

Lea los artículos sobre los sistemas de trading basados en las ideas muy variadas. Usted sabrá cómo usar los métodos estadísticos y los patrones en los gráficos de velas japonesas, cómo filtrar las señales y para qué sirven los indicadores semafóricos.

A través del Asistente MQL5 Usted aprenderá a crear los robots sin acudir a la programación para evaluar rápidamente las ideas comerciales, así como sabrá qué es lo que representan los algoritmos genéticos.

Nuevo artículo
últimas | mejores
preview
Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR

Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR

En este artículo se finaliza la implementación del breakeven por atr y rr en MQL5, junto con el desarrollo desde cero de una clase que permite cambiar fácilmente el tipo de breakeven sin necesidad de reingresar los parámetros. Se realizan múltiples backtests para evaluar el rendimiento de cada tipo, analizando sus ventajas y desventajas en el contexto del trading algorítmico.
preview
Características del Wizard MQL5 que debe conocer (Parte 48): Bill Williams Alligator

Características del Wizard MQL5 que debe conocer (Parte 48): Bill Williams Alligator

El indicador Alligator, creado por Bill Williams, es un indicador versátil para identificar tendencias que proporciona señales claras y que a menudo se combina con otros indicadores. Las clases y el ensamblador del asistente MQL5 nos permiten probar una variedad de señales basadas en patrones, por lo que también tenemos en cuenta este indicador.
preview
Computación cuántica y trading: Una nueva mirada a las previsiones de precios

Computación cuántica y trading: Una nueva mirada a las previsiones de precios

En el artículo analizaremos un enfoque innovador para predecir los movimientos de precios en los mercados financieros utilizando la computación cuántica. La atención se centrará en la aplicación del algoritmo Quantum Phase Estimation (QPE) para encontrar precursores de patrones de precios, lo que permitirá acelerar considerablemente el proceso de análisis de los datos de mercado.
preview
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)

Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)

Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
preview
Redes neuronales en el trading: Agente con memoria multinivel (Final)

Redes neuronales en el trading: Agente con memoria multinivel (Final)

Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
preview
Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

En este artículo, creamos un panel de noticias práctico utilizando el Calendario Económico MQL5 para mejorar nuestra estrategia comercial. Comenzamos diseñando el diseño, centrándonos en elementos clave como los nombres de los eventos, la importancia y el tiempo, antes de pasar a la configuración dentro de MQL5. Por último, implementamos un sistema de filtrado para mostrar sólo las noticias más relevantes, brindando a los operadores acceso rápido a eventos económicos impactantes.
preview
Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)

Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)

El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.
preview
Redes neuronales en el trading: Agente con memoria multinivel

Redes neuronales en el trading: Agente con memoria multinivel

Los enfoques de memoria multinivel que imitan los procesos cognitivos humanos permiten procesar datos financieros complejos y adaptarse a nuevas señales, lo cual contribuye a mejorar la eficacia de las decisiones de inversión en mercados dinámicos.
preview
Algoritmo de Big Bang y Big Crunch

Algoritmo de Big Bang y Big Crunch

En el presente artículo, le presentamos el método Big Bang - Big Crunch, que consta de dos fases clave: la creación cíclica de puntos aleatorios y su compresión hasta una solución óptima. Este enfoque combina exploración y refinamiento, lo cual permite encontrar soluciones progresivamente mejores y descubre nuevas oportunidades en el campo de la optimización.
preview
Indicador de fuerza y dirección de la tendencia en barras 3D

Indicador de fuerza y dirección de la tendencia en barras 3D

Hoy estudiaremos un nuevo enfoque del análisis de las tendencias del mercado basado en la visualización tridimensional y el análisis tensorial de la microestructura del mercado.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte XI): Cruce de medias móviles (II)

Reimaginando las estrategias clásicas en MQL5 (Parte XI): Cruce de medias móviles (II)

Las medias móviles y el oscilador estocástico podrían utilizarse para generar señales de trading que sigan la tendencia. Sin embargo, estas señales solo se observarán después de que se haya producido la acción del precio. Podemos superar eficazmente este retraso inherente a los indicadores técnicos utilizando la inteligencia artificial. Este artículo le enseñará cómo crear un asesor experto totalmente autónomo impulsado por IA de una manera que pueda mejorar cualquiera de sus estrategias de trading existentes. Incluso la estrategia comercial más antigua posible se puede mejorar.
preview
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)

Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)

En el artículo anterior, analizamos los fundamentos teóricos y pusimos en práctica los planteamientos del framework Multitask-Stockformer, que combina la transformada de wavelet y el modelo multitarea Self-Attention. Hoy seguiremos aplicando los algoritmos del framework anterior y evaluaremos su eficacia con datos históricos reales.
preview
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea

Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea

Le proponemos familiarizarse con un framework que combina la transformada de wavelet y el modelo multitarea Self-Attention con el objetivo de mejorar la capacidad de respuesta y la precisión de las previsiones en condiciones de mercado volátiles. La transformada de wavelet descompone los rendimientos de los activos en frecuencias altas y bajas, captando cuidadosamente las tendencias del mercado a largo plazo y las fluctuaciones a corto plazo.
preview
Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)

Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)

Este artículo ampliará la clase de gestión de operaciones para incluir órdenes de compra y venta con límite (buy-stop y sell-stop) con el fin de operar con eventos de noticias e implementar una restricción de vencimiento en estas órdenes para evitar cualquier operación nocturna. Se incorporará una función de deslizamiento (slippage) al experto para intentar prevenir o minimizar el posible deslizamiento que puede producirse al utilizar órdenes stop en las operaciones, especialmente durante eventos noticiosos.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)

Continuamos nuestro análisis del sistema comercial híbrido StockFormer, que combina codificación predictiva y algoritmos de aprendizaje por refuerzo para el análisis de series temporales financieras. El sistema se basa en tres ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) que permite identificar patrones complejos y relaciones entre activos. Ya nos hemos familiarizado con los aspectos teóricos del framework e implementado los mecanismos de DMH-Attn, así que hoy hablaremos sobre la arquitectura de los modelos y su entrenamiento.
preview
Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos

Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos

Hoy desarrollaremos un sistema comercial modular que combina Python para el análisis de datos con MQL5 para la ejecución de transacciones. Sus cuatro módulos independientes supervisan en paralelo distintos aspectos del mercado: volúmenes, arbitraje, economía y riesgo, y utilizan RandomForest con 400 árboles para el análisis. Se hace especial hincapié en la gestión del riesgo, porque sin una gestión eficaz del riesgo, ni siquiera los algoritmos comerciales más avanzados sirven de mucho.
preview
Criterios de tendencia en el trading

Criterios de tendencia en el trading

Las tendencias son una parte importante de muchas estrategias comerciales. En este artículo analizaremos algunas de las herramientas utilizadas para identificar tendencias y sus características. Comprender e interpretar correctamente las tendencias puede mejorar sustancialmente los resultados comerciales y minimizar los riesgos.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)

Hoy le presentamos el StockFormer, un sistema comercial híbrido que combina algoritmos de codificación predictiva y de aprendizaje por refuerzo (RL). El framework utiliza 3 ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) integrado que mejora el módulo de atención vainilla gracias a un bloque Feed-Forward multicabeza que permite captar diversos patrones de series temporales en diferentes subespacios.
preview
Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)

Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)

En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.
preview
Características del Wizard MQL5 que debe conocer (Parte 45): Aprendizaje por refuerzo con Monte-Carlo

Características del Wizard MQL5 que debe conocer (Parte 45): Aprendizaje por refuerzo con Monte-Carlo

Monte-Carlo es el cuarto algoritmo diferente de aprendizaje por refuerzo que estamos considerando con el objetivo de explorar su implementación en los asesores expertos ensamblados por el asistente. Aunque se basa en el muestreo aleatorio, ofrece numerosas posibilidades de simulación que podemos aprovechar.
preview
Redes neuronales en el trading: Conjunto de agentes con mecanismos de atención (MASAAT)

Redes neuronales en el trading: Conjunto de agentes con mecanismos de atención (MASAAT)

Hoy le presentamos la estructura multiagente adaptativa de optimización de portafolios (MASAAT), que combina mecanismos de atención y análisis de series temporales. El MASAAT genera un conjunto de agentes que analizan series de precios y cambios direccionales, permitiendo identificar fluctuaciones sustanciales en los precios de los activos a diferentes niveles de detalle.
preview
Asesor experto basado en un aproximador MLP universal

Asesor experto basado en un aproximador MLP universal

El artículo presenta una forma sencilla y asequible de usar redes neuronales en un asesor comercial que no requiere conocimientos profundos en aprendizaje automático. El método excluye la normalización de la función objetivo y elimina los problemas de "explosión de pesos" y "estupor de la red", posibilitando un aprendizaje intuitivo y un control visual de los resultados.
preview
Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz

Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz

¿Cómo funciona la negociación de portafolios en Fórex? ¿Cómo pueden sintetizarse la teoría de portafolios de Markowitz para optimizar las proporciones de los portafolios y el modelo VaR para optimizar el riesgo de los portafolios? Hoy crearemos un código de teoría de portafolios en el que, por un lado, obtendremos un riesgo bajo y, por otro, una rentabilidad aceptable a largo plazo.
preview
Operar con el Calendario Económico MQL5 (Parte 1): Dominar las funciones del Calendario Económico MQL5

Operar con el Calendario Económico MQL5 (Parte 1): Dominar las funciones del Calendario Económico MQL5

En este artículo, exploramos cómo utilizar el Calendario Económico MQL5 para operar, comenzando por comprender sus funciones principales. A continuación, implementamos las funciones clave del Calendario Económico en MQL5 para extraer datos relevantes de noticias que nos ayuden a tomar decisiones de trading. Finalmente, concluimos mostrando cómo utilizar esta información para mejorar las estrategias comerciales de manera efectiva.
preview
Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)

Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)

En este artículo, creamos un Asesor Experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout). Cubrimos los conceptos clave de la estrategia, diseñamos el plano del EA e implementamos la lógica de ruptura en MQL5. Al final, exploramos técnicas para realizar pruebas retrospectivas y optimizar el EA con el fin de maximizar su eficacia.
preview
Redes neuronales en el trading: Modelo adaptativo multiagente (Final)

Redes neuronales en el trading: Modelo adaptativo multiagente (Final)

En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.
preview
Redes neuronales en el trading: Modelo adaptativo multiagente (MASA)

Redes neuronales en el trading: Modelo adaptativo multiagente (MASA)

Hoy les propongo familiarizarse con el MASA, un framework adaptativo multiagente que combina el aprendizaje por refuerzo y las estrategias adaptativas para ofrecer un equilibrio armonioso entre la rentabilidad y la gestión del riesgo en condiciones de mercado turbulentas.
preview
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (Final)

Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (Final)

En artículos anteriores, revisamos los aspectos teóricos del framework PSformer, que incluye dos importantes innovaciones en la arquitectura del Transformer clásico: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt). En este artículo, continuaremos el trabajo sobre la implementación de los enfoques propuestos mediante MQL5.
preview
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)

Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)

Hoy proponemos al lector un primer contacto con el nuevo framework PSformer, que adapta la arquitectura del Transformer vainilla para resolver problemas de previsión de series temporales multidimensionales. El framework se basa en dos innovaciones clave: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt).
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)

Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)

Hoy discutiremos cómo mejorar la seguridad del Panel de administrador comercial que actualmente se encuentra en desarrollo. Exploraremos cómo implementar MQL5 en una nueva estrategia de seguridad, integrando la API de Telegram para la autenticación de dos factores (2FA). Esta discusión proporcionará información valiosa sobre la aplicación de MQL5 para reforzar las medidas de seguridad. Además, examinaremos la función MathRand, centrándonos en su funcionalidad y cómo se puede utilizar de forma efectiva dentro de nuestro marco de seguridad. ¡Sigue leyendo para descubrir más!
preview
Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones

En este artículo, nos centramos en transformar nuestro panel de control MQL5 estático en una herramienta interactiva habilitando la capacidad de respuesta de los botones. Exploramos cómo automatizar la funcionalidad de los componentes de la interfaz gráfica de usuario (GUI), asegurándonos de que reaccionen adecuadamente a los clics de los usuarios. Al final del artículo, establecemos una interfaz dinámica que mejora la participación del usuario y la experiencia comercial.
preview
Instalación de MetaTrader 5 y otras aplicaciones MetaQuotes en HarmonyOS NEXT

Instalación de MetaTrader 5 y otras aplicaciones MetaQuotes en HarmonyOS NEXT

Las aplicaciones de MetaQuotes, incluidas las plataformas MetaTrader 5 y MetaTrader 4, pueden instalarse en dispositivos con sistema operativo HarmonyOS NEXT usando el componente DroiTong. Este artículo ofrece una guía paso a paso para instalar aplicaciones en su teléfono o portátil.
preview
Características del Wizard MQL5 que debe conocer (Parte 43): Aprendizaje por refuerzo con SARSA

Características del Wizard MQL5 que debe conocer (Parte 43): Aprendizaje por refuerzo con SARSA

SARSA, que es la abreviatura de State-Action-Reward-State-Action (Estado-Acción-Recompensa-Estado-Acción), es otro algoritmo que se puede utilizar al implementar el aprendizaje por refuerzo. Por lo tanto, tal y como vimos con Q-Learning y DQN, analizamos cómo se podría explorar e implementar esto como un modelo independiente, en lugar de solo como un mecanismo de entrenamiento, en los asesores expertos ensamblados por el asistente.
preview
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)

El entrenamiento de los modelos de Transformer requiere grandes cantidades de datos y suele ser difícil debido a la escasa capacidad de generalización de los modelos en muestras pequeñas. El framework SAMformer ayuda a resolver este problema evitando los mínimos locales malos, mejorando la eficacia de los modelos incluso con muestras de entrenamiento limitadas.
preview
Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS) Modificación

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS) Modificación

En la segunda parte del artículo, seguiremos desarrollando una versión modificada del algoritmo AOS (Atomic Orbital Search), centrándonos en operadores específicos para mejorar su eficacia y adaptabilidad. Tras analizar los fundamentos y la mecánica del algoritmo, discutiremos ideas para mejorar el rendimiento y la capacidad de analizar espacios de soluciones complejos, proponiendo nuevos enfoques para ampliar su funcionalidad como herramienta de optimización.
preview
Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento

Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento

Este artículo profundizará en los métodos para mejorar el tiempo de ejecución del experto en el probador de estrategias. El código se escribirá para dividir los tiempos de los eventos de noticias en categorías por hora. Las horas de estos eventos noticiosos se accederán dentro de la hora especificada. Esto garantiza que el EA pueda gestionar de manera eficiente las operaciones basadas en eventos tanto en entornos de alta como de baja volatilidad.
preview
Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)

El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.
preview
El análisis volumétrico de redes neuronales como clave de las tendencias futuras

El análisis volumétrico de redes neuronales como clave de las tendencias futuras

Este artículo explora la posibilidad de mejorar la previsión de los precios usando como base el análisis comercial volumétrico mediante la integración de los principios del análisis técnico con la arquitectura de redes neuronales LSTM. Prestaremos especial atención a la detección e interpretación de volúmenes anómalos, el uso de clusterización y la generación y definición de características basadas en el volumen en el contexto del aprendizaje automático.
preview
Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas

Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas

Los bloques de órdenes (Order Blocks, OB) son áreas clave donde los operadores institucionales inician compras o ventas significativas. Después de un movimiento de precio significativo, Fibonacci ayuda a identificar un retroceso potencial desde un máximo reciente hasta un mínimo para identificar la entrada comercial óptima.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión

Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión

Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.