Artículos sobre aprendizaje automático en el trading

icon

Creación de robots comerciales basados en inteligencia artificial: integración nativa con Python, operaciones con matrices y vectores, bibliotecas de matemáticas y estadística y mucho más.

Aprenda a usar el aprendizaje automático en el trading. Neuronas, perceptrones, redes convolucionales y recurrentes, modelos predictivos: parta de lo básico y avance hasta construir su propia IA. Aprenderá a entrenar y aplicar redes neuronales para el comercio algorítmico en los mercados financieros.

Nuevo artículo
últimas | mejores
12
preview
Redes neuronales: así de sencillo (Parte 28): Algoritmo de gradiente de políticas

Redes neuronales: así de sencillo (Parte 28): Algoritmo de gradiente de políticas

Continuamos analizando los métodos de aprendizaje por refuerzo. En el artículo anterior, nos familiarizamos con el método de aprendizaje Q profundo, en el que entrenamos un modelo para predecir la próxima recompensa dependiendo de la acción realizada en una situación particular. Luego realizamos una acción según nuestra política y la recompensa esperada, pero no siempre es posible aproximar la función Q, o su aproximación no ofrece el resultado deseado. En estos casos, los métodos de aproximación no se utilizan para funciones de utilidad, sino para una política (estrategia) de acciones directa. Precisamente a tales métodos pertenece el gradiente de políticas o policy gradient.
preview
Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Seguimos explorando el aprendizaje por refuerzo. En este artículo, hablaremos del método de aprendizaje Q profundo o deep Q-learning. El uso de este método permitió al equipo de DeepMind crear un modelo capaz de superar a los humanos jugando a los videojuegos de ordenador de Atari. Nos parece útil evaluar el potencial de esta tecnología para las tareas comerciales.
preview
Redes neuronales: así de sencillo (Parte 26): Aprendizaje por refuerzo

Redes neuronales: así de sencillo (Parte 26): Aprendizaje por refuerzo

Continuamos estudiando los métodos de aprendizaje automático. En este artículo, iniciaremos otro gran tema llamado «Aprendizaje por refuerzo». Este enfoque permite a los modelos establecer ciertas estrategias para resolver las tareas. Esperamos que esta propiedad del aprendizaje por refuerzo abra nuevos horizontes para la construcción de estrategias comerciales.
preview
Aprendizaje automático y Data Science (Parte 06): Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

Aprendizaje automático y Data Science (Parte 06): Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

En el artículo anterior, comenzamos a estudiar las redes neuronales con conexión directa, pero hay algunas cosas que quedaron sin resolver. Una de ellas es el diseño de la arquitectura. Por ello, en el presente artículo, veremos cómo diseñar una red neuronal flexible, teniendo en cuenta los datos de entrada, el número de capas ocultas y los nodos de cada red.
preview
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
preview
Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)

Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)

En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.
preview
Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.
preview
Aprendizaje automático y data science (Parte 06): Descenso de gradiente

Aprendizaje automático y data science (Parte 06): Descenso de gradiente

El descenso de gradiente juega un papel importante en el entrenamiento de redes neuronales y diversos algoritmos de aprendizaje automático: es un algoritmo rápido e inteligente. Sin embargo, a pesar de su impresionante funcionamiento, muchos científicos de datos todavía lo malinterpretan. Veamos sobre qué tratará este artículo.
preview
Redes neuronales: así de sencillo (Parte 18): Reglas asociativas

Redes neuronales: así de sencillo (Parte 18): Reglas asociativas

Como continuación de esta serie, hoy presentamos otro tipo de tarea relacionada con los métodos de aprendizaje no supervisado: la búsqueda de reglas asociativas. Este tipo de tarea se usó por primera vez en el comercio minorista para analizar las cestas de la compra. En este artículo, hablaremos de las posibilidades que ofrece el uso de dichos algoritmos en el trading.
preview
Aprendizaje automático y data science (Parte 05): Árboles de decisión usando como ejemplo las condiciones meteorológicas para jugar al tenis

Aprendizaje automático y data science (Parte 05): Árboles de decisión usando como ejemplo las condiciones meteorológicas para jugar al tenis

Los árboles de decisión clasifican los datos imitando la forma de pensar de los seres humanos. En este artículo, veremos cómo construir árboles de decisión y usar estos para clasificar y predecir datos. El objetivo principal del algoritmo del árbol de decisión es dividir la muestra en datos con "impurezas" y en datos "limpios" o próximos a los nodos.
preview
Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.
preview
Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

En este artículo, intentaremos usar nuestro modelo logístico para predecir una caída del mercado de valores según las principales acciones de la economía estadounidense: NETFLIX y APPLE. Analizaremos estas acciones, y también usaremos la información sobre las anteriores caídas del mercado en 2019 y 2020. Veamos cómo funcionará nuestro modelo en las poco favorables condiciones actuales.
preview
Aprendizaje automático y data science (Parte 03): Regresión matricial

Aprendizaje automático y data science (Parte 03): Regresión matricial

En esta ocasión, vamos a crear modelos usando matrices: estas ofrecen una gran flexibilidad y permiten crear modelos potentes que pueden manejar no solo cinco variables independientes, sino muchas otras, tantas como los límites computacionales de nuestro ordenador nos permitan. El presente artículo será muy interesante, eso seguro.
preview
Redes neuronales: así de sencillo (Parte 14): Clusterización de datos

Redes neuronales: así de sencillo (Parte 14): Clusterización de datos

Lo confieso: ha pasado más de un año desde que publiqué el último artículo. En tanto tiempo, me ha sido posible repensar mucho, desarrollar nuevos enfoques. Y en este nuevo artículo, me gustaría alejarme un poco del método anteriormente usado de aprendizaje supervisado, y sugerir una pequeña inmersión en los algoritmos de aprendizaje no supervisado. En particular, vamos a analizar uno de los algoritmos de clusterización, las k-medias.
preview
Cómo avanzar en el aprendizaje automático

Cómo avanzar en el aprendizaje automático

Aquí tenemos una selección de materiales que resultarán útiles para que los tráders mejoren sus conocimientos sobre el trading algorítmico. La época de los algoritmos simples es cosa del pasado: ahora es difícil alcanzar el éxito sin utilizar el aprendizaje automático y las redes neuronales.
preview
Aprendizaje automático y Data Science (Parte 02): Regresión logística

Aprendizaje automático y Data Science (Parte 02): Regresión logística

La clasificación de los datos es un punto crucial para los tráders algorítmicos y los programadores. En este artículo, nos centraremos en uno de los algoritmos logísticos de clasificación que podría ayudarnos a identificar los síes o los noes, las subidas y bajadas, las compras y las ventas.
preview
Aprendizaje automático y Data Science (Parte 01): Regresión lineal

Aprendizaje automático y Data Science (Parte 01): Regresión lineal

Es hora de que los tráders entrenemos nuestros sistemas y aprendamos a tomar nuestras propias decisiones en función de lo que muestren los números. En este proceso, evitaremos los métodos visuales o intuitivos que usa todo el mundo. Marcharemos perpendicularmente a la dirección general.
preview
Matrices y vectores en MQL5

Matrices y vectores en MQL5

La matriz y el vector de tipos de datos especiales nos permiten escribir un código próximo a la notación matemática. Esto elimina la necesidad de crear ciclos anidados y recordar la indexación correcta de las matrices que participan en los cálculos, aumentando la fiabilidad y la velocidad del desarrollo de programas complejos.
preview
Perceptrón Multicapa y Algoritmo de Retropropagación (Parte II): Implementación en Python e integración en MQL5

Perceptrón Multicapa y Algoritmo de Retropropagación (Parte II): Implementación en Python e integración en MQL5

Se ha puesto a disposición un paquete de Python con el propósito de desarrollar la integración en MQL, lo que abre las puertas a numerosas posibilidades como la exploración de datos, la creación y el uso de modelos de aprendizaje automático. Esta integración nativa de MQL5 en Python abre las puertas a muchas posibilidades de uso que nos permiten construir desde una simple regresión lineal a un modelo de aprendizaje profundo. Entendamos cómo instalar y preparar el entorno de desarrollo y usar algunas de las bibliotecas de aprendizaje automático.
preview
Redes neuronales: así de sencillo (Parte 12): Dropout

Redes neuronales: así de sencillo (Parte 12): Dropout

A la hora de proseguir el estudio de las redes neuronales, probablemente merezca la pena prestar un poco de atención a los métodos capaces de aumentar su convergencia durante el entrenamiento. Existen varios de estos métodos. En este artículo, proponemos al lector analizar uno de ellos: el Dropout (dilución).
preview
Redes neuronales: así de sencillo (Parte 11): Variaciones de GTP

Redes neuronales: así de sencillo (Parte 11): Variaciones de GTP

Hoy en día, quizás uno de los modelos de lenguaje de redes neuronales más avanzados sea GPT-3, que en su versión máxima contiene 175 mil millones de parámetros. Obviamente, no vamos a crear semejante monstruo en condiciones domésticas. Pero sí que podemos ver qué soluciones arquitectónicas se pueden usar en nuestro trabajo y qué ventajas nos ofrecerán.
preview
Redes neuronales: así de sencillo (Parte 10): Multi-Head Attention (atención multi-cabeza)

Redes neuronales: así de sencillo (Parte 10): Multi-Head Attention (atención multi-cabeza)

Ya hemos hablado con anterioridad del mecanismo de auto-atención (self-attention) en las redes neuronales. En la práctica, en las arquitecturas de las redes neuronales modernas, se usan varios hilos de auto-atención paralelos para buscar diversas dependencias entre los elementos de la secuencia. Vamos a ver la implementación de este enfoque y evaluar su influencia en el rendimiento general de la red.
preview
Redes neuronales: así de sencillo (Parte 9): Documentamos el trabajo realizado

Redes neuronales: así de sencillo (Parte 9): Documentamos el trabajo realizado

Ya hemos recorrido un largo camino y el código de nuestra biblioteca ha crecido de manera considerable. Resulta difícil monitorear todas las conexiones y dependencias. Y, obviamente, antes de proseguir con el desarrollo del proyecto, necesitaremos documentar el trabajo ya realizado y actualizar la documentación en cada paso posterior. Una documentación debidamente redactada nos ayudará a ver la integridad de nuestro trabajo.
preview
Redes neuronales: así de sencillo (Parte 8): Mecanismos de atención

Redes neuronales: así de sencillo (Parte 8): Mecanismos de atención

En artículos anteriores, ya hemos puesto a prueba diferentes variantes para organizar las redes neuronales, incluyendo las redes convolucionales, adoptadas de algoritmos de procesamiento de imágenes. En el presente artículo, les proponemos analizar los mecanismos de atención, cuya aparición impulsó el desarrollo de los modelos de lenguaje.
preview
Perceptrón Multicapa y Algoritmo de Retropropagación

Perceptrón Multicapa y Algoritmo de Retropropagación

Recientemente, al aumentar la popularidad de estos dos métodos, se han desarrollado tantas bibliotecas en Matlab, R, Python, C++, etc., que reciben el conjunto de entrenamiento como entrada y construyen automáticamente una red neuronal apropiada para el supuesto problema. Vamos a entender cómo funciona un tipo básico de red neural, (perceptrón de una sola neurona y perceptrón multicapa), y un fascinante algoritmo encargado del aprendizaje de la red, (gradiente descendente y retropropagación). Estos modelos de red servirán como base para los modelos más complejos que existen hoy en día.
12