Find us on Facebook!
Join our fan page
¡Escriba un artículo
y le pagaremos 200 USD por él!
Descargar MetaTrader 5 con nuevas posibilidades de trading automático

Artículos sobre aprendizaje automático en el trading

icon

Creación de robots comerciales basados en inteligencia artificial: integración nativa con Python, operaciones con matrices y vectores, bibliotecas de matemáticas y estadística y mucho más.

Aprenda a usar el aprendizaje automático en el trading. Neuronas, perceptrones, redes convolucionales y recurrentes, modelos predictivos: parta de lo básico y avance hasta construir su propia IA. Aprenderá a entrenar y aplicar redes neuronales para el comercio algorítmico en los mercados financieros.

Nuevo artículo
últimas | mejores
preview
Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic

Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic

Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.
preview
Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q

Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q

En el artículo anterior, presentamos el método DDPG, que nos permite entrenar modelos en un espacio de acción continuo. Sin embargo, al igual que otros métodos de aprendizaje Q, el DDPG tiende a sobreestimar los valores de la función Q. Con frecuencia, este problema provoca que entrenemos los agentes con una estrategia subóptima. En el presente artículo, analizaremos algunos enfoques para superar el problema mencionado.
preview
Teoría de categorías en MQL5 (Parte 12): Orden

Teoría de categorías en MQL5 (Parte 12): Orden

El artículo forma parte de una serie sobre la implementación de grafos utilizando la teoría de categorías en MQL5 y está dedicado a la relación de orden (Order Theory). Hoy analizaremos dos tipos básicos de orden y exploraremos cómo los conceptos de relación de orden pueden respaldar conjuntos monoides en las decisiones comerciales.
preview
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
preview
Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

En el artículo anterior, nos familiarizamos con el método DIAYN, que ofrece un algoritmo para el aprendizaje de diversas habilidades. El uso de las habilidades aprendidas puede aprovecharse en diversas tareas, pero estas habilidades pueden resultar bastante impredecibles, lo cual puede dificultar su uso. En este artículo, analizaremos un algoritmo para el aprendizaje de habilidades predecibles.
preview
Teoría de categorías (Parte 9): Acciones de monoides

Teoría de categorías (Parte 9): Acciones de monoides

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. En este artículo examinaremos las acciones de los monoides como un medio de transformación de los monoides descritos en el artículo anterior para aumentar sus aplicaciones.
preview
Representaciones en el dominio de la frecuencia de series temporales: El espectro de potencia

Representaciones en el dominio de la frecuencia de series temporales: El espectro de potencia

En este artículo, veremos métodos asociados con el análisis de series temporales en el dominio de la frecuencia. También prestaremos atención a los beneficios del estudio de las funciones espectrales de series temporales al construir modelos predictivos. Además, analizaremos algunas perspectivas prometedoras para el análisis de series temporales en el dominio de la frecuencia utilizando la transformada discreta de Fourier (DFT).
preview
Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

El presente artículo describe modelos de aprendizaje jerárquico que ofrecen un enfoque eficiente para resolver problemas complejos de aprendizaje automático. Los modelos jerárquicos constan de varios niveles; cada uno de ellos es responsable de diferentes aspectos del problema.
preview
Matrices y vectores en MQL5: funciones de activación

Matrices y vectores en MQL5: funciones de activación

En este artículo, describiremos solo uno de los aspectos del aprendizaje automático: las funciones de activación. En las redes neuronales artificiales, las funciones de activación de neuronas calculan el valor de la señal de salida en función de los valores de una señal de entrada o un conjunto de señales de entrada. Hoy le mostraremos lo que hay "debajo del capó".
preview
Envolviendo modelos ONNX en clases

Envolviendo modelos ONNX en clases

La programación orientada a objetos permite crear un código más compacto, fácil de leer y modificar. Le presentamos un ejemplo para tres modelos ONNX.
preview
Aprendizaje automático y Data Science (Parte 14): Aplicación de los mapas de Kohonen a los mercados

Aprendizaje automático y Data Science (Parte 14): Aplicación de los mapas de Kohonen a los mercados

¿Quiere encontrar un nuevo enfoque comercial que lo ayude a orientarse en mercados complejos y en cambio constante? Eche un vistazo a los mapas de Kohonen, una forma innovadora de redes neuronales artificiales que puede ayudarle a descubrir patrones y tendencias ocultos en los datos del mercado. En este artículo, veremos cómo funcionan los mapas de Kohonen y cómo usarlos para desarrollar estrategias comerciales efectivas. Creo que este nuevo enfoque resultará de interés tanto a los tráders experimentados como para los principiantes.
preview
Ejemplo de un conjunto de modelos ONNX en MQL5

Ejemplo de un conjunto de modelos ONNX en MQL5

ONNX (Open Neural Network eXchange) es un estándar abierto para representar redes neuronales. En este artículo, le mostraremos la posibilidad de usar dos modelos ONNX simultáneamente en un asesor experto.
preview
Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

En el artículo anterior, analizamos los modelos relacionales que utilizan mecanismos de atención en su arquitectura. Una de las características de dichos modelos es su mayor uso de recursos informáticos. Este artículo propondrá uno de los posibles mecanismos para reducir el número de operaciones computacionales dentro del bloque Self-Attention o de auto-atención, lo cual aumentará el rendimiento del modelo en su conjunto.
preview
Teoría de Categorías en MQL5 (Parte 5): Ecualizadores

Teoría de Categorías en MQL5 (Parte 5): Ecualizadores

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Uso de modelos ONNX en MQL5

Uso de modelos ONNX en MQL5

ONNX (Open Neural Network Exchange) es un estándar abierto para representar modelos de redes neuronales. En este artículo, analizaremos el proceso de creación de un modelo CNN-LSTM para pronosticar series temporales financieras, y también el uso del modelo ONNX creado en un asesor experto MQL5.
preview
Teoría de categorías en MQL5 (Parte 4): Intervalos, experimentos y composiciones

Teoría de categorías en MQL5 (Parte 4): Intervalos, experimentos y composiciones

La teoría de categorías es una rama de las matemáticas diversa y en expansión, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo describir algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Aprendizaje automático y Data Science (Parte 13): Analizamos el mercado financiero usando el análisis de componentes principales (ACP)

Aprendizaje automático y Data Science (Parte 13): Analizamos el mercado financiero usando el análisis de componentes principales (ACP)

Hoy intentaremos mejorar cualitativamente el análisis de los mercados financieros utilizando el Análisis de Componentes Principales (ACP). Asimismo, aprenderemos cómo este método puede ayudarnos a identificar patrones ocultos en los datos, detectar tendencias ocultas del mercado y optimizar las estrategias de inversión. En este artículo veremos cómo el método de ACP aporta una nueva perspectiva al análisis de datos financieros complejos, ayudándonos a ver ideas que hemos pasado por alto con los enfoques tradicionales. ¿La aplicación del método ACP en estos mercados financieros ofrece una ventaja competitiva y ayuda a ir un paso por delante?
preview
Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?

Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?

Probablemente mucha gente esté cansada de intentar predecir el mercado bursátil constantemente. ¿No le gustaría tener una bola de cristal que le ayudara a tomar decisiones de inversión más informadas? Las redes neuronales de autoaprendizaje podrían ser su solución. En este artículo, analizaremos si estos potentes algoritmos pueden ayudarnos a "subirnos a la ola" y ser más astutos que el mercado bursátil. Mediante el análisis de grandes cantidades de datos y la identificación de patrones, las redes neuronales de autoaprendizaje pueden hacer predicciones que a menudo resultan más precisas que las realizadas por los tráders. Veamos si estas tecnologías de vanguardia pueden usarse para tomar decisiones de inversión inteligentes y ganar más.
preview
Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

En los modelos de aprendizaje por refuerzo analizados anteriormente, usamos varias opciones de redes convolucionales que pueden identificar varios objetos en los datos originales. La principal ventaja de las redes convolucionales es su capacidad de identificar objetos independientemente de la ubicación de estos. Al mismo tiempo, las redes convolucionales no siempre son capaces de hacer frente a diversas deformaciones de los objetos y al ruido. Pero estos problemas pueden resolverse usando el modelo relacional.
preview
Teoría de categorías en MQL5 (Parte 3)

Teoría de categorías en MQL5 (Parte 3)

La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Aprendizaje automático y Data Science (Parte 11): Clasificador bayesiano ingenuo y teoría de la probabilidad en el trading

Aprendizaje automático y Data Science (Parte 11): Clasificador bayesiano ingenuo y teoría de la probabilidad en el trading

Comerciar con probabilidades es como caminar por la cuerda floja: requiere precisión, equilibrio y una clara comprensión del riesgo. En el mundo del trading, la probabilidad lo es todo: es lo que determina el resultado, el éxito o el fracaso, los beneficios o las pérdidas. Usando el poder de la probabilidad, los tráders pueden tomar decisiones mejor informadas, gestionar el riesgo con mayor eficacia y alcanzar sus objetivos financieros. Tanto si es usted un inversor experimentado como un tráder principiante, comprender las probabilidades puede ser la clave para liberar su potencial comercial. En este artículo, analizaremos el fascinante mundo del trading probabilístico y le mostraremos cómo llevar su modo de comerciar al siguiente nivel.
preview
Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)

Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)

Este texto es una guía completa sobre la creación de una clase en MQL5 para la gestión eficaz de archivos CSV. En él comprenderás cómo se lleva a cabo la implementación de métodos de apertura, escritura, lectura y conversión de datos y cómo se pueden emplear para guardar y acceder a la información. Además, trataremos las restricciones y los aspectos cruciales a la hora de utilizar una clase de este tipo. Este es un material valioso para aquellos que deseen aprender a manipular archivos CSV en MQL5.