Artículos sobre aprendizaje automático en el trading

icon

Creación de robots comerciales basados en inteligencia artificial: integración nativa con Python, operaciones con matrices y vectores, bibliotecas de matemáticas y estadística y mucho más.

Aprenda a usar el aprendizaje automático en el trading. Neuronas, perceptrones, redes convolucionales y recurrentes, modelos predictivos: parta de lo básico y avance hasta construir su propia IA. Aprenderá a entrenar y aplicar redes neuronales para el comercio algorítmico en los mercados financieros.

Nuevo artículo
últimas | mejores
preview
Matrices y vectores en MQL5: funciones de activación

Matrices y vectores en MQL5: funciones de activación

En este artículo, describiremos solo uno de los aspectos del aprendizaje automático: las funciones de activación. En las redes neuronales artificiales, las funciones de activación de neuronas calculan el valor de la señal de salida en función de los valores de una señal de entrada o un conjunto de señales de entrada. Hoy le mostraremos lo que hay "debajo del capó".
preview
Aprendizaje de máquinas de Yándex (CatBoost) sin estudiar Python y R

Aprendizaje de máquinas de Yándex (CatBoost) sin estudiar Python y R

En el artículo, descricribiremos las etapas del proceso de aprendizaje de máquinas usando un ejemplo concreto, y también adjuntaremos un código sobre el mismo. Para obtener los modelos, no necesitaremos conocer ningún lenguaje de programación como Python o R. Los conocimientos requeridos de MQL5 no serán profundos, iguales, por cierto, que los del autor del presente artículo; por eso, esperamos que este artículo sirva de guía para un amplio círculo de lectores que deseen valorar de forma experimental las posibilidades del aprendizaje de máquinas e implementar estas en sus desarrollos.
preview
Algoritmos de optimización de la población: Colonia artificial de abejas (Artificial Bee Colony - ABC)

Algoritmos de optimización de la población: Colonia artificial de abejas (Artificial Bee Colony - ABC)

Hoy estudiaremos el algoritmo de colonia artificial de abejas. Asimismo, complementaremos nuestros conocimientos con nuevos principios para el estudio de los espacios funcionales. En este artículo hablaremos sobre mi interpretación de la versión clásica del algoritmo.
preview
Aprendizaje automático y Data Science (Parte 23): ¿Por qué LightGBM y XGBoost superan a muchos modelos de IA?

Aprendizaje automático y Data Science (Parte 23): ¿Por qué LightGBM y XGBoost superan a muchos modelos de IA?

Estas técnicas avanzadas de árboles de decisión potenciados por gradiente ofrecen un rendimiento y una flexibilidad superiores, lo que las hace ideales para el modelado financiero y el comercio algorítmico. Aprenda a aprovechar estas herramientas para optimizar sus estrategias comerciales, mejorar la precisión predictiva y obtener una ventaja competitiva en los mercados financieros.
Neuroredes profundas (Parte VIII). Aumentando la calidad de la clasificación de los conjuntos bagging
Neuroredes profundas (Parte VIII). Aumentando la calidad de la clasificación de los conjuntos bagging

Neuroredes profundas (Parte VIII). Aumentando la calidad de la clasificación de los conjuntos bagging

En el artículo se analizan tres métodos con cuya ayuda podemos aumentar la calidad de clasificación de los conjuntos bagging y valorar su efectividad. Se ha evaluado cómo influye la optimización de los hiperparámetros de las redes neuronales ELM y los parámetros de post-procesado en la calidad de clasificación del conjunto.
preview
Introducción a MQL5 (Parte 7): Guía para principiantes sobre cómo crear asesores expertos y utilizar código generado por IA en MQL5

Introducción a MQL5 (Parte 7): Guía para principiantes sobre cómo crear asesores expertos y utilizar código generado por IA en MQL5

Descubra la guía definitiva para principiantes sobre cómo crear asesores expertos (Expert Advisors, EAs) con MQL5 en nuestro artículo completo. Aprenda paso a paso cómo construir EA usando pseudocódigo y aprovechar el poder del código generado por IA. Ya sea que sea nuevo en el comercio algorítmico o busque mejorar sus habilidades, esta guía proporciona un camino claro para crear EA efectivos.
preview
Aprendizaje automático y Data Science (Parte 16): Una nueva mirada a los árboles de decisión

Aprendizaje automático y Data Science (Parte 16): Una nueva mirada a los árboles de decisión

En la última parte de nuestra serie sobre aprendizaje automático y trabajo con big data, vamos a volver a los árboles de decisión. Este artículo va dirigido a los tráders que desean comprender el papel de los árboles de decisión en el análisis de las tendencias del mercado. Asimismo, contiene toda la información básica sobre la estructura, la finalidad y el uso de estos árboles. Hoy analizaremos las raíces y ramas de los árboles algorítmicos y veremos cuál es su potencial en relación con las decisiones comerciales. También echaremos juntos un nuevo vistazo a los árboles de decisión y veremos cómo pueden ayudarnos a superar los retos de los mercados financieros.
preview
Aprendizaje automático y data science (Parte 06): Descenso de gradiente

Aprendizaje automático y data science (Parte 06): Descenso de gradiente

El descenso de gradiente juega un papel importante en el entrenamiento de redes neuronales y diversos algoritmos de aprendizaje automático: es un algoritmo rápido e inteligente. Sin embargo, a pesar de su impresionante funcionamiento, muchos científicos de datos todavía lo malinterpretan. Veamos sobre qué tratará este artículo.
preview
Estrategia de trading del SP500 en MQL5 para principiantes

Estrategia de trading del SP500 en MQL5 para principiantes

Descubra cómo aprovechar MQL5 para pronosticar el S&P 500 con precisión, combinando análisis técnico clásico para lograr mayor estabilidad y algoritmos con principios probados en el tiempo para obtener información sólida del mercado.
preview
Modelo de aprendizaje profundo GRU en Python usando ONNX en asesores expertos, GRU vs LSTM

Modelo de aprendizaje profundo GRU en Python usando ONNX en asesores expertos, GRU vs LSTM

El artículo está dedicado al desarrollo de un modelo de aprendizaje profundo GRU ONNX en Python. En la parte práctica, implementaremos este modelo en un asesor comercial y, a continuación, compararemos el rendimiento del modelo GRU con LSTM (memoria a largo plazo).
preview
Redes neuronales: así de sencillo (Parte 5): Cálculos multihilo en OpenCL

Redes neuronales: así de sencillo (Parte 5): Cálculos multihilo en OpenCL

Ya hemos analizado algunos tipos de implementación de redes neuronales. Podemos ver con facilidad que se repiten las mismas operaciones para cada neurona de la red. Y aquí sentimos el legítimo deseo de aprovechar las posibilidades que ofrece la computación multihilo de la tecnología moderna para acelerar el proceso de aprendizaje de una red neuronal. En el presente artículo, analizaremos una de las opciones para tal implementación.
preview
Aprendizaje automático y data science (Parte 03): Regresión matricial

Aprendizaje automático y data science (Parte 03): Regresión matricial

En esta ocasión, vamos a crear modelos usando matrices: estas ofrecen una gran flexibilidad y permiten crear modelos potentes que pueden manejar no solo cinco variables independientes, sino muchas otras, tantas como los límites computacionales de nuestro ordenador nos permitan. El presente artículo será muy interesante, eso seguro.
preview
Redes neuronales: así de sencillo (Parte 28): Algoritmo de gradiente de políticas

Redes neuronales: así de sencillo (Parte 28): Algoritmo de gradiente de políticas

Continuamos analizando los métodos de aprendizaje por refuerzo. En el artículo anterior, nos familiarizamos con el método de aprendizaje Q profundo, en el que entrenamos un modelo para predecir la próxima recompensa dependiendo de la acción realizada en una situación particular. Luego realizamos una acción según nuestra política y la recompensa esperada, pero no siempre es posible aproximar la función Q, o su aproximación no ofrece el resultado deseado. En estos casos, los métodos de aproximación no se utilizan para funciones de utilidad, sino para una política (estrategia) de acciones directa. Precisamente a tales métodos pertenece el gradiente de políticas o policy gradient.
preview
Introducción a MQL5 (Parte 5): Funciones de trabajo con arrays para principiantes

Introducción a MQL5 (Parte 5): Funciones de trabajo con arrays para principiantes

En el quinto artículo de nuestra serie, nos familiarizaremos con el mundo de los arrays en MQL5. Este artículo ha sido pensado para principiantes. En este artículo intentaremos repasar conceptos complejos de programación de manera simplificada para que el material resulte comprensible para todos. Asimismo, exploraremos conceptos básicos, discutiremos diferentes cuestiones y compartiremos conocimientos.
preview
Aprendizaje automático y data science (Parte 05): Árboles de decisión usando como ejemplo las condiciones meteorológicas para jugar al tenis

Aprendizaje automático y data science (Parte 05): Árboles de decisión usando como ejemplo las condiciones meteorológicas para jugar al tenis

Los árboles de decisión clasifican los datos imitando la forma de pensar de los seres humanos. En este artículo, veremos cómo construir árboles de decisión y usar estos para clasificar y predecir datos. El objetivo principal del algoritmo del árbol de decisión es dividir la muestra en datos con "impurezas" y en datos "limpios" o próximos a los nodos.
preview
Desarrollo de un robot en Python y MQL5 (Parte 1): Preprocesamiento de datos

Desarrollo de un robot en Python y MQL5 (Parte 1): Preprocesamiento de datos

Desarrollar un robot de trading basado en aprendizaje automático: Una guía detallada. El primer artículo de la serie trata de la recogida y preparación de datos y características. El proyecto se ejecuta utilizando el lenguaje de programación y las librerías Python, así como la plataforma MetaTrader 5.
preview
Algoritmos de optimización de la población: Método de Nelder-Mead

Algoritmos de optimización de la población: Método de Nelder-Mead

En el artículo de hoy, le presentamos un estudio completo del método de Nelder-Mead, en el que se explica cómo el símplex (el espacio de parámetros de la función) se modifica y reordena en cada iteración para alcanzar la solución óptima; asimismo, describiremos una forma de mejorar este método.
preview
Arbitraje triangular con predicciones

Arbitraje triangular con predicciones

Este artículo simplifica el arbitraje triangular y le muestra cómo utilizar predicciones y software especializado para operar con divisas de forma más inteligente, incluso si es nuevo en el mercado. ¿Listo para operar con experiencia?
preview
Algoritmos de optimización de la población: Algoritmo de luciérnagas (Firefly Algorithm - FA)

Algoritmos de optimización de la población: Algoritmo de luciérnagas (Firefly Algorithm - FA)

Hoy analizaremos el método de optimización «Búsqueda con ayuda del algoritmo de luciérnagas» 'Firefly Algorithm Search' (FA). Tras modificar el algoritmo, este ha pasado de ocupar un lugar marginal a convertirse en un verdadero líder en la tabla de calificación.
preview
Redes neuronales: así de sencillo (Parte 9): Documentamos el trabajo realizado

Redes neuronales: así de sencillo (Parte 9): Documentamos el trabajo realizado

Ya hemos recorrido un largo camino y el código de nuestra biblioteca ha crecido de manera considerable. Resulta difícil monitorear todas las conexiones y dependencias. Y, obviamente, antes de proseguir con el desarrollo del proyecto, necesitaremos documentar el trabajo ya realizado y actualizar la documentación en cada paso posterior. Una documentación debidamente redactada nos ayudará a ver la integridad de nuestro trabajo.
preview
Aprendizaje automático y Data Science (Parte 11): Clasificador bayesiano ingenuo y teoría de la probabilidad en el trading

Aprendizaje automático y Data Science (Parte 11): Clasificador bayesiano ingenuo y teoría de la probabilidad en el trading

Comerciar con probabilidades es como caminar por la cuerda floja: requiere precisión, equilibrio y una clara comprensión del riesgo. En el mundo del trading, la probabilidad lo es todo: es lo que determina el resultado, el éxito o el fracaso, los beneficios o las pérdidas. Usando el poder de la probabilidad, los tráders pueden tomar decisiones mejor informadas, gestionar el riesgo con mayor eficacia y alcanzar sus objetivos financieros. Tanto si es usted un inversor experimentado como un tráder principiante, comprender las probabilidades puede ser la clave para liberar su potencial comercial. En este artículo, analizaremos el fascinante mundo del trading probabilístico y le mostraremos cómo llevar su modo de comerciar al siguiente nivel.
preview
Algoritmos de optimización de la población: Optimización de colonias de hormigas (ACO)

Algoritmos de optimización de la población: Optimización de colonias de hormigas (ACO)

En esta ocasión, analizaremos el algoritmo de optimización de colonias de hormigas (ACO). El algoritmo es bastante interesante y ambiguo al mismo tiempo. Intentaremos crear un nuevo tipo de ACO.
preview
Gradient boosting (CatBoost) en las tareas de construcción de sistemas comerciales. Un enfoque ingenuo

Gradient boosting (CatBoost) en las tareas de construcción de sistemas comerciales. Un enfoque ingenuo

Entrenamiento del clasificador CatBoost en el lenguaje Python, exportación al formato mql5; análisis de los parámetros del modelo y simulador de estrategias personalizado. Para preparar los datos y entrenar el modelo, se usan el lenguaje de programación Python y la biblioteca MetaTrader5.
preview
Redes neuronales: así de sencillo (Parte 29): Algoritmo actor-crítico con ventaja (Advantage actor-critic)

Redes neuronales: así de sencillo (Parte 29): Algoritmo actor-crítico con ventaja (Advantage actor-critic)

En los artículos anteriores de esta serie, nos familiarizamos con dos algoritmos de aprendizaje por refuerzo. Obviamente, cada uno de ellos tiene sus propias ventajas y desventajas. Como suele suceder en estos casos, se nos ocurre combinar ambos métodos en un algoritmo que incorporaría lo mejor de los dos, y así compensar las carencias de cada uno de ellos. En este artículo, hablaremos de dicho método.
preview
Remuestreo avanzado y selección de modelos CatBoost con el método de fuerza bruta

Remuestreo avanzado y selección de modelos CatBoost con el método de fuerza bruta

Este artículo describe uno de los posibles enfoques respecto a la transformación de datos para mejorar las capacidades generalizadoras del modelo, y también analiza la iteración sobre los modelos CatBoost y la elección del mejor de ellos.
preview
Aprendizaje de máquinas en sistemas comerciales con cuadrícula y martingale. ¿Apostaría por ello?

Aprendizaje de máquinas en sistemas comerciales con cuadrícula y martingale. ¿Apostaría por ello?

En este artículo, presentaremos al lector la técnica del aprendizaje automático para el comercio con martingale y cuadrícula. Para nuestra sorpresa, este enfoque, por algún motivo, no se ha tratado en absoluto en la red global. Después de leer el artículo, podremos crear nuestros propios bots.
preview
Aprendizaje automático y Data Science (Parte 10): Regresión de cresta

Aprendizaje automático y Data Science (Parte 10): Regresión de cresta

La regresión de cresta (Ridge Regression) es una técnica simple para reducir la complejidad del modelo y combatir el ajuste que puede derivar de una regresión lineal simple.
preview
Redes neuronales de propagación inversa del error en matrices MQL5

Redes neuronales de propagación inversa del error en matrices MQL5

El artículo describe la teoría y la práctica de la aplicación del algoritmo de propagación inversa del error en MQL5 con la ayuda de matrices. Asimismo, incluye clases y ejemplos preparados del script, el indicador y el asesor.
preview
Aprendizaje automático y Data Science (Parte 02): Regresión logística

Aprendizaje automático y Data Science (Parte 02): Regresión logística

La clasificación de los datos es un punto crucial para los tráders algorítmicos y los programadores. En este artículo, nos centraremos en uno de los algoritmos logísticos de clasificación que podría ayudarnos a identificar los síes o los noes, las subidas y bajadas, las compras y las ventas.
preview
Creación de predicciones de series temporales mediante redes neuronales LSTM: Normalización del precio y tokenización del tiempo

Creación de predicciones de series temporales mediante redes neuronales LSTM: Normalización del precio y tokenización del tiempo

Este artículo describe una estrategia simple para normalizar los datos del mercado utilizando el rango diario y entrenar una red neuronal para mejorar las predicciones del mercado. Los modelos desarrollados pueden utilizarse junto con un marco de análisis técnico existente o de forma independiente para ayudar a predecir la dirección general del mercado. Cualquier analista técnico puede perfeccionar aún más el marco descrito en este artículo para desarrollar modelos adecuados tanto para estrategias comerciales manuales como automatizadas.
preview
Aprendizaje automático y Data Science (Parte 07): Regresión polinomial

Aprendizaje automático y Data Science (Parte 07): Regresión polinomial

La regresión polinomial es un modelo flexible diseñado para resolver de forma eficiente problemas que un modelo de regresión lineal no puede gestionar. En este artículo, aprenderemos a crear modelos polinómicos en MQL5 y a sacar provecho de ellos.
preview
Redes neuronales: así de sencillo (Parte 26): Aprendizaje por refuerzo

Redes neuronales: así de sencillo (Parte 26): Aprendizaje por refuerzo

Continuamos estudiando los métodos de aprendizaje automático. En este artículo, iniciaremos otro gran tema llamado «Aprendizaje por refuerzo». Este enfoque permite a los modelos establecer ciertas estrategias para resolver las tareas. Esperamos que esta propiedad del aprendizaje por refuerzo abra nuevos horizontes para la construcción de estrategias comerciales.
preview
Algoritmos de optimización de la población: Optimización de malas hierbas invasoras (IWO)

Algoritmos de optimización de la población: Optimización de malas hierbas invasoras (IWO)

La asombrosa capacidad de las malas hierbas para sobrevivir en una gran variedad de condiciones inspiró la idea de un potente algoritmo de optimización. El IWO es uno de los mejores entre los analizados anteriormente.
preview
Algoritmos de optimización de la población: Búsqueda armónica (HS)

Algoritmos de optimización de la población: Búsqueda armónica (HS)

Hoy estudiaremos y pondremos a prueba un algoritmo de optimización muy potente, la búsqueda armónica (HS), que se inspira en el proceso de búsqueda de la armonía sonora perfecta. ¿Qué algoritmo lidera ahora mismo nuestra clasificación?
preview
Experimentos con redes neuronales (Parte 2): Optimización inteligente de una red neuronal

Experimentos con redes neuronales (Parte 2): Optimización inteligente de una red neuronal

Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
preview
Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización

Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización

Sumérjase en el corazón de las redes neuronales mientras desmitificamos los algoritmos de optimización utilizados dentro de la red neuronal. En este artículo, descubra las técnicas clave que liberan todo el potencial de las redes neuronales, impulsando sus modelos a nuevas cotas de precisión y eficacia.
preview
Experimentos con redes neuronales (Parte 1): Recordando la geometría

Experimentos con redes neuronales (Parte 1): Recordando la geometría

Las redes neuronales lo son todo. En este artículo, usaremos la experimentación y enfoques no estándar para desarrollar un sistema comercial rentable y comprobaremos si las redes neuronales pueden ser de alguna ayuda para los comerciantes.
preview
Redes neuronales: así de sencillo (Parte 31): Algoritmos evolutivos

Redes neuronales: así de sencillo (Parte 31): Algoritmos evolutivos

En el artículo anterior, comenzamos a analizar los métodos de optimización sin gradiente, y también nos familiarizamos con el algoritmo genético. Hoy continuaremos con el tema iniciado, y estudiaremos otra clase de algoritmos evolutivos.
preview
Uso de modelos ONNX en MQL5

Uso de modelos ONNX en MQL5

ONNX (Open Neural Network Exchange) es un estándar abierto para representar modelos de redes neuronales. En este artículo, analizaremos el proceso de creación de un modelo CNN-LSTM para pronosticar series temporales financieras, y también el uso del modelo ONNX creado en un asesor experto MQL5.
preview
Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Seguimos explorando el aprendizaje por refuerzo. En este artículo, hablaremos del método de aprendizaje Q profundo o deep Q-learning. El uso de este método permitió al equipo de DeepMind crear un modelo capaz de superar a los humanos jugando a los videojuegos de ordenador de Atari. Nos parece útil evaluar el potencial de esta tecnología para las tareas comerciales.