Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Implementación del algoritmo criptográfico SHA-256 desde cero en MQL5

Implementación del algoritmo criptográfico SHA-256 desde cero en MQL5

La creación de integraciones de intercambio de criptomonedas sin DLL ha sido durante mucho tiempo un reto, pero esta solución proporciona un marco completo para la conectividad directa con el mercado.
preview
Redes neuronales en el trading: Aprendizaje multitarea basado en el modelo ResNeXt

Redes neuronales en el trading: Aprendizaje multitarea basado en el modelo ResNeXt

El marco de aprendizaje multitarea basado en ResNeXt optimiza el análisis de datos financieros considerando su alta dimensionalidad, la no linealidad y las dependencias temporales. El uso de la convolución grupal y cabezas especializadas permite al modelo extraer eficazmente características clave de los datos de origen.
preview
La estrategia comercial de captura de liquidez

La estrategia comercial de captura de liquidez

La estrategia de negociación basada en la captura de liquidez es un componente clave de Smart Money Concepts (SMC), que busca identificar y aprovechar las acciones de los actores institucionales en el mercado. Implica apuntar a áreas de alta liquidez, como zonas de soporte o resistencia, donde las órdenes grandes pueden desencadenar movimientos de precios antes de que el mercado reanude su tendencia. Este artículo explica en detalle el concepto de «liquidity grab» (captura de liquidez) y describe el proceso de desarrollo de la estrategia de negociación basada en la captura de liquidez en MQL5.
preview
Implementación de los cierres parciales en MQL5

Implementación de los cierres parciales en MQL5

En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
preview
Características del Wizard MQL5 que debe conocer (Parte 52): Accelerator Oscillator (AC)

Características del Wizard MQL5 que debe conocer (Parte 52): Accelerator Oscillator (AC)

El Accelerator Oscillator es otro indicador de Bill Williams que sigue la aceleración del impulso del precio y no solo su ritmo. Aunque es muy similar al oscilador Awesome que analizamos en un artículo reciente, busca evitar los efectos de retraso centrándose más en la aceleración que en la velocidad. Como siempre, examinamos qué patrones podemos obtener de esto y también qué importancia podría tener cada uno de ellos en el trading a través de un asesor experto creado por el Asistente MQL5 (MQL5 Wizard).
preview
Automatización de estrategias de trading en MQL5 (Parte 3): Sistema RSI de recuperación de zona para la gestión dinámica de operaciones

Automatización de estrategias de trading en MQL5 (Parte 3): Sistema RSI de recuperación de zona para la gestión dinámica de operaciones

En este artículo, creamos un sistema (un EA) de recuperación de zona RSI en MQL5, utilizando señales RSI para lanzar operaciones y una estrategia de recuperación para gestionar las pérdidas. Implementamos una clase «ZoneRecovery» para automatizar las entradas de operaciones, la lógica de recuperación y la gestión de posiciones. El artículo concluye con información sobre backtesting para optimizar el rendimiento y mejorar la eficacia del EA.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Aunque algunos conceptos pueden parecer sencillos a primera vista, ponerlos en práctica puede resultar bastante complicado. En el siguiente artículo, le guiaremos a través de nuestro innovador enfoque para automatizar un Asesor Experto (Expert Advisor, EA) que analiza hábilmente el mercado utilizando una estrategia de reversión a la media. Acompáñenos mientras desentrañamos las complejidades de este apasionante proceso de automatización.
preview
Redes neuronales en el trading: Transformador jerárquico de doble torre (Final)

Redes neuronales en el trading: Transformador jerárquico de doble torre (Final)

Seguimos construyendo el modelo del transformador jerárquico Hidformer de dos torres, diseñado para analizar y predecir series temporales multivariantes complejas. En este artículo llevaremos el trabajo iniciado anteriormente a su conclusión lógica probando el modelo con datos históricos reales.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (III) Ajuste del adaptador

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (III) Ajuste del adaptador

Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
preview
Dominando las operaciones con archivos en MQL5: desde E/S básicas hasta la creación de un lector CSV personalizado

Dominando las operaciones con archivos en MQL5: desde E/S básicas hasta la creación de un lector CSV personalizado

Este artículo se centra en las técnicas esenciales de manejo de archivos MQL5, que abarcan registros de operaciones, procesamiento CSV e integración de datos externos. Ofrece tanto comprensión conceptual como orientación práctica sobre codificación. Los lectores aprenderán a crear paso a paso una clase de importador CSV personalizada, adquiriendo habilidades prácticas para aplicaciones del mundo real.
preview
Redes neuronales en el trading: Transformador jerárquico de doble torre (Hidformer)

Redes neuronales en el trading: Transformador jerárquico de doble torre (Hidformer)

Hoy le proponemos introducir un framework de transformador jerárquico de dos torres (Hidformer) desarrollado para la previsión de series temporales y el análisis de datos. Los autores del framework propusieron varias mejoras en la arquitectura del Transformer que mejoran la precisión de las predicciones y reducen el consumo de recursos computacionales.
preview
Automatización de estrategias de trading en MQL5 (Parte 2): El sistema Kumo Breakout con Ichimoku y Awesome Oscillator

Automatización de estrategias de trading en MQL5 (Parte 2): El sistema Kumo Breakout con Ichimoku y Awesome Oscillator

En este artículo, creamos un Asesor Experto (EA) que automatiza la estrategia Kumo Breakout utilizando el indicador Ichimoku Kinko Hyo y el Awesome Oscillator. Recorremos el proceso de inicialización de los indicadores, detección de condiciones de ruptura y codificación de entradas y salidas automáticas en las operaciones. Además, implementamos trailing stops y lógica de gestión de posiciones para mejorar el rendimiento del EA y su adaptabilidad a las condiciones del mercado.
preview
Creamos y optimizamos un sistema comercial basado en los volúmenes negociados (Chaikin Money Flow (CMF))

Creamos y optimizamos un sistema comercial basado en los volúmenes negociados (Chaikin Money Flow (CMF))

En este artículo, le presentaremos el indicador Chaikin Money Flow (CMF), basado en el volumen, después de aprender cómo se puede construir, calcular y utilizar. Asimismo, veremos cómo crear un indicador personalizado, analizaremos algunas estrategias sencillas que podemos utilizar y las pondremos a prueba para ver cuál es la mejor.
preview
Introducción a MQL5 (Parte 10): Guía de trabajo con indicadores incorporados en MQL5 para principiantes

Introducción a MQL5 (Parte 10): Guía de trabajo con indicadores incorporados en MQL5 para principiantes

Este artículo describe cómo trabajar con indicadores incorporados en MQL5, con especial atención en la creación de un asesor experto basado en el indicador RSI utilizando un enfoque de proyecto. Hoy aprenderá a obtener y utilizar los valores RSI, a gestionar las fluctuaciones de liquidez y a mejorar la visualización de las transacciones mediante objetos gráficos. Además, el artículo abordará otros aspectos importantes: el riesgo como porcentaje del depósito, los ratios riesgo/rentabilidad y la modificación del riesgo sobre la marcha para proteger los beneficios.
preview
Operar con el Calendario Económico MQL5 (Parte 5): Mejorar el panel de control con controles adaptables y botones de filtro

Operar con el Calendario Económico MQL5 (Parte 5): Mejorar el panel de control con controles adaptables y botones de filtro

En este artículo, creamos botones para filtros de pares de divisas, niveles de importancia, filtros de tiempo y una opción de cancelación para mejorar el control del panel. Estos botones están programados para responder dinámicamente a las acciones del usuario, lo que permite una interacción fluida. También automatizamos su comportamiento para reflejar los cambios en tiempo real en el panel de control. Esto mejora la funcionalidad general, la movilidad y la capacidad de respuesta del panel.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA

Estamos pasando de simplemente ver las métricas analizadas en gráficos a una perspectiva más amplia que incluye la integración de Telegram. Esta mejora permite que los resultados importantes se envíen directamente a tu dispositivo móvil a través de la aplicación Telegram. Acompáñenos en este viaje que exploraremos juntos en este artículo.
preview
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)

Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)

Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.
preview
Operar con el Calendario Económico MQL5 (Parte 4): Implementación de actualizaciones de noticias en tiempo real en el panel de control

Operar con el Calendario Económico MQL5 (Parte 4): Implementación de actualizaciones de noticias en tiempo real en el panel de control

Este artículo mejora nuestro panel de control del calendario económico al implementar actualizaciones de noticias en tiempo real para mantener la información del mercado actualizada y útil. Integramos técnicas de obtención de datos en tiempo real en MQL5 para actualizar continuamente los eventos en el panel de control, mejorando así la capacidad de respuesta de la interfaz. Esta actualización garantiza que podamos acceder a las últimas noticias económicas directamente desde el panel de control, optimizando las decisiones comerciales basadas en los datos más recientes.
preview
Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias

Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias

CatBoost es un potente modelo de aprendizaje automático basado en árboles que se especializa en la toma de decisiones basada en características estacionarias. Otros modelos basados en árboles, como XGBoost y Random Forest, comparten características similares en cuanto a su solidez, capacidad para manejar patrones complejos e interpretabilidad. Estos modelos tienen una amplia gama de usos, desde el análisis de características hasta la gestión de riesgos. En este artículo, vamos a explicar el procedimiento para utilizar un modelo CatBoost entrenado como filtro para una estrategia clásica de seguimiento de tendencias con cruce de medias móviles.
preview
Características del Wizard MQL5 que debe conocer (Parte 50): Awesome Oscillator

Características del Wizard MQL5 que debe conocer (Parte 50): Awesome Oscillator

El Awesome Oscillator es otro indicador de Bill Williams que se utiliza para medir el impulso. Puede generar múltiples señales, por lo que las revisamos según un patrón, como en artículos anteriores, aprovechando las clases y el ensamblaje del Asistente MQL5 (Wizard MQL5).
preview
Operar con el Calendario Económico MQL5 (Parte 3): Añadiendo filtros de divisa, importancia y tiempo

Operar con el Calendario Económico MQL5 (Parte 3): Añadiendo filtros de divisa, importancia y tiempo

En este artículo, implementamos filtros en el panel del calendario económico MQL5 para refinar la visualización de eventos de noticias por divisa, importancia y hora. Primero establecemos criterios de filtrado para cada categoría y luego los integramos en el panel de control para mostrar solo los eventos relevantes. Por último, nos aseguramos de que cada filtro se actualice dinámicamente para proporcionar a los operadores información económica específica y en tiempo real.
preview
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)

Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)

Hoy le propongo familiarizarse con el framework MacroHFT, que aplica el aprendizaje por refuerzo dependiente del contexto y la memoria para mejorar las decisiones en el comercio de criptodivisas de alta frecuencia utilizando datos macroeconómicos y agentes adaptativos.
preview
Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)

Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)

Seguimos aplicando los planteamientos propuestos por los autores del framework FinCon. FinCon es un sistema multiagente basado en grandes modelos lingüísticos (LLM). Hoy pondremos en marcha los módulos necesarios y efectuaremos pruebas exhaustivas del modelo con datos históricos reales.
preview
Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código

Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código

Para continuar avanzando, sería bueno ver si podemos mejorar los resultados realizando periódicamente optimizaciones automáticas repetidas y generando un nuevo asesor experto. El escollo en muchos argumentos sobre el uso de la optimización de parámetros es la cuestión de cuánto tiempo pueden usarse los parámetros obtenidos para operar en el periodo futuro manteniendo los principales indicadores de rentabilidad y reducción en los niveles dados. ¿Es posible en general lograrlo?
preview
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (Final)

Redes neuronales en el trading: Agente multimodal con herramientas complementarias (Final)

Seguimos trabajando en la implementación de los algoritmos para el agente multimodal de comercio financiero (FinAgent), diseñado para analizar los datos multimodales de la dinámica de mercado y los patrones comerciales históricos.
preview
Ciclos y trading

Ciclos y trading

Este artículo trata sobre el uso de ciclos en el trading. Consideraremos construir una estrategia comercial basada en modelos cíclicos.
preview
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 20): Ordenando la cadena de etapas de optimización automática de proyectos (I)

Desarrollamos un Asesor Experto multidivisas (Parte 20): Ordenando la cadena de etapas de optimización automática de proyectos (I)

Ya hemos creado bastantes componentes que ayudan a organizar la optimización automática. Durante la creación, seguimos la estructura cíclica tradicional: desde la creación de código mínimo funcional hasta la refactorización y la obtención de código mejorado. Es hora de empezar a limpiar nuestra base de datos, que también es un componente clave en el sistema que estamos creando.
preview
Automatización de estrategias de trading en MQL5 (Parte 1): El sistema Profitunity (Trading Chaos de Bill Williams)

Automatización de estrategias de trading en MQL5 (Parte 1): El sistema Profitunity (Trading Chaos de Bill Williams)

En este artículo, examinamos el sistema Profitunity de Bill Williams, desglosando sus componentes principales y su enfoque único para operar en el caos del mercado. Guiamos a los lectores a través de la implementación del sistema en MQL5, centrándonos en la automatización de indicadores clave y señales de entrada/salida. Por último, probamos y optimizamos la estrategia, proporcionando información sobre su desempeño en diversos escenarios de mercado.
preview
Observador de Connexus (Parte 8): Cómo agregar un observador de solicitudes

Observador de Connexus (Parte 8): Cómo agregar un observador de solicitudes

En esta última entrega de nuestra serie de bibliotecas Connexus, exploramos la implementación del patrón Observer, así como refactorizaciones esenciales de rutas de archivos y nombres de métodos. Esta serie cubrió todo el desarrollo de Connexus, diseñado para simplificar la comunicación HTTP en aplicaciones complejas.
preview
Características del Wizard MQL5 que debe conocer (Parte 47): Aprendizaje por refuerzo con diferencia temporal

Características del Wizard MQL5 que debe conocer (Parte 47): Aprendizaje por refuerzo con diferencia temporal

La diferencia temporal es otro algoritmo del aprendizaje por refuerzo que actualiza los valores Q basándose en la diferencia entre las recompensas previstas y las reales durante el entrenamiento del agente. Se centra específicamente en la actualización de los valores Q sin tener en cuenta su emparejamiento estado-acción. Por lo tanto, veremos cómo aplicar esto, tal y como hemos hecho en artículos anteriores, en un Asesor Experto creado mediante un asistente.
preview
Redes neuronales en el trading: Sistema multiagente con validación conceptual (FinCon)

Redes neuronales en el trading: Sistema multiagente con validación conceptual (FinCon)

Hoy le proponemos familiarizarnos con el framework FinCon, un sistema multiagente basado en grandes modelos lingüísticos (LLM). El framework usa el refuerzo verbal conceptual para mejorar la toma de decisiones y la gestión del riesgo con el fin de realizar eficazmente diversas tareas financieras.
preview
Características del Wizard MQL5 que debe conocer (Parte 48): Bill Williams Alligator

Características del Wizard MQL5 que debe conocer (Parte 48): Bill Williams Alligator

El indicador Alligator, creado por Bill Williams, es un indicador versátil para identificar tendencias que proporciona señales claras y que a menudo se combina con otros indicadores. Las clases y el ensamblador del asistente MQL5 nos permiten probar una variedad de señales basadas en patrones, por lo que también tenemos en cuenta este indicador.
preview
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)

Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)

Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
preview
Redes neuronales en el trading: Agente con memoria multinivel (Final)

Redes neuronales en el trading: Agente con memoria multinivel (Final)

Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
preview
Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias

En este artículo, creamos un panel de noticias práctico utilizando el Calendario Económico MQL5 para mejorar nuestra estrategia comercial. Comenzamos diseñando el diseño, centrándonos en elementos clave como los nombres de los eventos, la importancia y el tiempo, antes de pasar a la configuración dentro de MQL5. Por último, implementamos un sistema de filtrado para mostrar sólo las noticias más relevantes, brindando a los operadores acceso rápido a eventos económicos impactantes.
preview
Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)

Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)

El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.
preview
Redes neuronales en el trading: Agente con memoria multinivel

Redes neuronales en el trading: Agente con memoria multinivel

Los enfoques de memoria multinivel que imitan los procesos cognitivos humanos permiten procesar datos financieros complejos y adaptarse a nuevas señales, lo cual contribuye a mejorar la eficacia de las decisiones de inversión en mercados dinámicos.
preview
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)

Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)

En el artículo anterior, analizamos los fundamentos teóricos y pusimos en práctica los planteamientos del framework Multitask-Stockformer, que combina la transformada de wavelet y el modelo multitarea Self-Attention. Hoy seguiremos aplicando los algoritmos del framework anterior y evaluaremos su eficacia con datos históricos reales.
preview
Ingeniería de características con Python y MQL5 (Parte II): El ángulo del precio

Ingeniería de características con Python y MQL5 (Parte II): El ángulo del precio

Hay muchas publicaciones en el foro MQL5 pidiendo ayuda para calcular la pendiente de los cambios de precios. Este artículo demostrará una forma posible de calcular el ángulo formado por los cambios de precio en cualquier mercado en el que desee operar. Además, responderemos si vale la pena invertir el esfuerzo y el tiempo extra para diseñar esta nueva característica. Exploraremos si la pendiente del precio puede mejorar la precisión de nuestro modelo de IA al pronosticar el par USDZAR en M1.