Artículos con ejemplos de programación de robots comerciales en el lenguaje MQL5

icon

En el ámbito del trading automático los Asesores Expertos es la cima de la programación y objetivo deseable de cada desarrollador. Usted puede escribir su propio Asesor Experto utilizando los artículos de esta sección. Paso a paso los principiantes podrán pasar todas las fases de creación, depuración y simulación de los sistemas automáticos de trading.

Los artículos no sólo enseñarán a programar en el lenguaje MQL5, sino mostrarán cómo implementar cualquier idea y técnica comercial. Usted conocerá cómo programar el Trailing Stop, cómo realizar la gestión del capital, cómo obtener el valor del indicador y muchas cosas más.

Nuevo artículo
últimas | mejores
preview
Cómo implementar la optimización automática en los asesores expertos de MQL5

Cómo implementar la optimización automática en los asesores expertos de MQL5

Guía paso a paso para la optimización automática en MQL5 para Asesores Expertos. Cubriremos la lógica de optimización robusta, las mejores prácticas para la selección de parámetros y cómo reconstruir estrategias con pruebas retrospectivas. Además, se discutirán métodos de nivel superior, como la optimización del avance, para mejorar su enfoque comercial.
preview
Ejemplo de Análisis de Redes de Causalidad (CNA), Control Óptimo de Modelos Estocásticos (SMOC) y la Teoría de Juegos de Nash con Aprendizaje Profundo (Deep Learning)

Ejemplo de Análisis de Redes de Causalidad (CNA), Control Óptimo de Modelos Estocásticos (SMOC) y la Teoría de Juegos de Nash con Aprendizaje Profundo (Deep Learning)

Agregaremos Deep Learning a esos tres ejemplos que se publicaron en artículos anteriores y compararemos los resultados con los anteriores. El objetivo es aprender cómo agregar DL (Deep Learning) a otro EA.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

En este artículo, integramos botones interactivos en línea en un Asesor Experto MQL5, permitiendo el control en tiempo real a través de Telegram. Cada pulsación de botón desencadena acciones específicas y envía respuestas al usuario. También modularizamos las funciones para manejar los mensajes de Telegram y las consultas de devolución de llamada de forma eficiente.
preview
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.
preview
Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Seguimos estudiando los algoritmos para extraer características de una nube de puntos. Y en este artículo, nos familiarizaremos con los mecanismos para mejorar la eficacia del método PointNet.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones

Redes neuronales en el trading: Transformador contrastivo de patrones

El transformador contrastivo de patrones analiza la situación del mercado tanto a nivel de velas individuales como de patrones completos, lo cual contribuye a mejorar la calidad de modelado de las tendencias del mercado, mientras que el uso del aprendizaje por contraste para emparejar las representaciones de velas y patrones conduce a la autorregulación y a la mejora de la precisión de la predicción.
preview
Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

En este artículo, desarrollamos un Asesor Experto de trading de ejecución rápida en MQL5, aprovechando los indicadores SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) para crear una estrategia de trading reactiva y eficiente. Detallamos la implementación de la estrategia, incluyendo el uso de los indicadores, la generación de señales y el proceso de prueba y optimización.
preview
Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones

Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones

A la hora de analizar la situación del mercado con nuestros modelos, el elemento clave es la vela. No obstante, sabemos desde hace tiempo que las velas pueden ayudar a predecir los movimientos futuros de los precios. Y en este artículo aprenderemos un método que nos permitirá integrar ambos enfoques.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real

En este artículo, creamos varias clases para facilitar la comunicación en tiempo real entre MQL5 y Telegram. Nos centramos en recuperar comandos de Telegram, decodificarlos e interpretarlos y enviar respuestas apropiadas. Al final, nos aseguramos de que estas interacciones se prueben eficazmente y estén operativas dentro del entorno comercial.
preview
Redes neuronales en el trading: Transformador con codificación relativa

Redes neuronales en el trading: Transformador con codificación relativa

El aprendizaje autosupervisado puede ser una forma eficaz de analizar grandes cantidades de datos no segmentados. El principal factor de éxito es la adaptación de los modelos a las particularidades de los mercados financieros, lo cual contribuye a mejorar el rendimiento de los métodos tradicionales. Este artículo le presentará un mecanismo alternativo de atención que permitirá considerar las dependencias y relaciones relativas entre los datos de origen.
preview
Redes neuronales en el trading: Segmentación guiada (Final)

Redes neuronales en el trading: Segmentación guiada (Final)

Continuamos el trabajo iniciado en el artículo anterior sobre la construcción del marco RefMask3D usando herramientas MQL5. Este marco está diseñado para explorar de forma exhaustiva la interacción multimodal y analizar las características de una nube de puntos, seguida de la identificación del objeto de destino partiendo de la descripción proporcionada en lenguaje natural.
preview
Gestión de Riesgo (Parte 5): Integrando la Gestión de Riesgo en un Asesor Experto

Gestión de Riesgo (Parte 5): Integrando la Gestión de Riesgo en un Asesor Experto

En este artículo implemento la gestión de riesgo desarrollada en publicaciones anteriores e incorporo el indicador de order blocks presentado en otros artículos. Además, realizaré un backtest para comparar los resultados con la aplicación de la gestión de riesgo y evaluaré el impacto del riesgo dinámico.
preview
Redes neuronales en el trading: Segmentación guiada

Redes neuronales en el trading: Segmentación guiada

Hoy proponemos al lector familiarizarse con el método de análisis multimodal complejo de interacción y comprensión de características.
preview
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.
preview
Redes neuronales en el trading: Segmentación de datos basada en expresiones de referencia

Redes neuronales en el trading: Segmentación de datos basada en expresiones de referencia

En el proceso de análisis de la situación del mercado, dividimos este en segmentos individuales, identificando las tendencias clave. Sin embargo, los métodos tradicionales de análisis suelen centrarse en un solo aspecto, lo cual limita nuestra percepción. En este artículo, presentaremos un método que nos permitirá seleccionar varios objetos, ofreciéndonos una comprensión más completa y variada de la situación.
preview
El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5

El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5

Este artículo revelará el potencial del modelo Value at Risk (VaR) para optimizar un portafolio multidivisa. Usando el poder de Python y la funcionalidad de MetaTrader 5, hoy demostraremos cómo implementar el análisis VaR para la asignación eficiente de capital y la gestión de posiciones. Desde los fundamentos teóricos hasta la aplicación práctica, el artículo abarcará todos los aspectos de la aplicación de uno de los sistemas de cálculo del riesgo más sólidos, el VaR, a la negociación algorítmica.
preview
Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.
preview
Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

El análisis directo de nubes de puntos evita alcanza un tamaño de datos innecesario y mejora la eficacia de los modelos en tareas de clasificación y segmentación. Estos enfoques demuestran un alto rendimiento y solidez frente a las perturbaciones de los datos de origen.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Continuamos nuestro análisis del método del Transformador Vectorial Jerárquico. En este artículo finalizaremos la construcción del modelo. También lo entrenaremos y probaremos con datos históricos reales.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Hoy proponemos al lector introducir el método del transformador vectorial jerárquico (HiVT), desarrollado para la previsión rápida y precisa de series temporales multimodales.
preview
Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

La comprensión del comportamiento de los agentes es importante en distintos ámbitos, pero la mayoría de los métodos se centran en una única tarea (comprensión, eliminación del ruido, predicción), lo cual reduce su eficacia en escenarios del mundo real. En este artículo, propongo al lector introducir un modelo capaz de adaptarse a diferentes tareas.
preview
Formulación de un Asesor Experto Multipar Dinámico (Parte 1): Correlación de divisas y correlación inversa

Formulación de un Asesor Experto Multipar Dinámico (Parte 1): Correlación de divisas y correlación inversa

El asesor experto dinámico de múltiples pares aprovecha las estrategias de correlación y correlación inversa para optimizar el rendimiento comercial. Al analizar datos del mercado en tiempo real, identifica y explota la relación entre pares de divisas.
preview
Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Este artículo presenta una guía completa para implementar un sistema comercial sofisticado utilizando análisis de red de causalidad (CNA) y autorregresión vectorial (Vector autoregression, VAR) en MQL5. Abarca los fundamentos teóricos de estos métodos, ofrece explicaciones detalladas de las funciones clave del algoritmo de negociación e incluye código de ejemplo para su aplicación.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

En este artículo, refactorizamos el código existente utilizado para enviar mensajes y capturas de pantalla de MQL5 a Telegram organizándolo en funciones modulares y reutilizables. Esto agilizará el proceso, permitiendo una ejecución más eficiente y una gestión del código más sencilla en múltiples instancias.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto MQL5 que codifica capturas de pantalla de gráficos como datos de imagen y las envía a un chat de Telegram a través de peticiones HTTP. Al integrar la codificación y transmisión de fotos, mejoramos el sistema existente MQL5-Telegram con perspectivas visuales de trading directamente dentro de Telegram.
preview
Redes neuronales en el trading: Modelos del espacio de estados

Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.
preview
Analizamos ejemplos de estrategias comerciales en el terminal de cliente

Analizamos ejemplos de estrategias comerciales en el terminal de cliente

En este artículo, utilizaremos esquemas de bloques para analizar visualmente la lógica de los asesores de entrenamiento adjuntos al terminal, ubicados en la carpeta Experts\Free Robots, que negocian con patrones de velas.
preview
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.
preview
Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.
preview
Redes neuronales en el trading: Resultados prácticos del método TEMPO

Redes neuronales en el trading: Resultados prácticos del método TEMPO

Continuamos familiarizándonos con el método TEMPO. En este artículo, analizaremos la efectividad de los enfoques propuestos con datos históricos reales.
preview
Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR

Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.
preview
Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Continuamos nuestro análisis de los modelos de pronóstico de series temporales. En este artículo le propongo familiarizarnos con un algoritmo complejo construido sobre el uso de un modelo de lenguaje previamente entrenado.
preview
Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.
preview
Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.

Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.

En esta serie de artículos, analizamos estrategias de trading clásicas utilizando algoritmos modernos para determinar si podemos mejorar la estrategia utilizando IA. En el artículo de hoy, retomamos un enfoque clásico para operar con el SP500 utilizando la relación que guarda con los bonos del Tesoro estadounidense.
preview
Operar con noticias de manera sencilla (Parte 3): Realizando operaciones

Operar con noticias de manera sencilla (Parte 3): Realizando operaciones

En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.
preview
Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA

Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA

Este artículo presenta un asesor experto sofisticado para el trading de divisas, que combina el aprendizaje automático con el análisis técnico. Se centra en la negociación de acciones de Apple, presentando optimización adaptativa, gestión de riesgos y múltiples estrategias. Las pruebas retrospectivas muestran resultados prometedores con una alta rentabilidad, pero también caídas significativas, lo que indica potencial para un mayor refinamiento.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto integrado con MQL5 y Telegram que envía señales de cruce de medias móviles a Telegram. Detallamos el proceso de generación de señales de trading a partir de cruces de medias móviles, implementando el código necesario en MQL5, y asegurando que la integración funciona a la perfección. El resultado es un sistema que proporciona alertas comerciales en tiempo real directamente a su chat grupal de Telegram.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram

En este artículo, creamos un Asesor Experto (EA) en MQL5 para enviar mensajes a Telegram usando un bot. Configuramos los parámetros necesarios, incluido el token de API del bot y el ID de chat, y luego realizamos una solicitud HTTP POST para entregar los mensajes. Posteriormente, gestionamos la respuesta para garantizar una entrega exitosa y solucionar cualquier problema que surja en caso de falla. Esto garantiza que enviemos mensajes desde MQL5 a Telegram a través del bot creado.
preview
Implementación de Deus EA: Trading automatizado con RSI y promedios móviles en MQL5

Implementación de Deus EA: Trading automatizado con RSI y promedios móviles en MQL5

Este artículo describe los pasos para implementar Deus EA basado en los indicadores RSI y promedio móvil para guiar el trading automatizado.
preview
Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas

Los modelos de aprendizaje automático vienen con varios parámetros ajustables. En esta serie de artículos, exploraremos cómo personalizar sus modelos de IA para que se adapten a su mercado específico utilizando la biblioteca SciPy.