Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов

Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов

Регрессия опорных векторов — это идеалистический способ поиска функции или "гиперплоскости" (hyper-plane), который наилучшим образом описывает взаимосвязь между двумя наборами данных. Мы попытаемся использовать его при прогнозировании временных рядов в пользовательских классах Мастера MQL5.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

В статье описана практическая реализация фреймворка HimNet на базе MQL5, который готов к интеграции в автоматическую торговлю. Мы показываем, как метапараметры, адаптированные под гетерогенность, превращают модель в универсальный инструмент, способный справляться с изменчивой волатильностью.
preview
Анализ влияния солнечных и лунных циклов на цены валют

Анализ влияния солнечных и лунных циклов на цены валют

Что если лунные циклы и сезонные паттерны влияют на валютные рынки? Эта статья показывает, как перевести астрологические концепции на язык математики и машинного обучения. Я создал Python-систему с 88 признаками на основе астрономических циклов, обучил CatBoost на 15 годах данных EUR/USD и получил интригующие результаты. Код открыт, методы проверяемы, выводы неожиданны — древняя мудрость встречается с градиентным бустингом.
preview
Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)

Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)

Предлагаем познакомиться с инновационной техникой адаптивного патчинга — способа гибко сегментировать временные ряды с учётом их внутренней периодичности. А также с техникой эффективного кодирования, позволяющего сохранять важные семантические характеристики при работе с данными разного масштаба. Эти методы открывают новые возможности для точной обработки сложных многомасштабных данных, характерных для финансовых рынков, и существенно повышают стабильность и обоснованность прогнозов.
preview
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Статья посвящена метаэвристическому алгоритму Atmosphere Clouds Model Optimization (ACMO), который моделирует поведение облаков для решения задач оптимизации. Алгоритм использует принципы генерации, движения и распространения облаков, адаптируясь к "погодным условиям" в пространстве решений. Статья раскрывает, как метеорологическая симуляция алгоритма находит оптимальные решения в сложном пространстве возможностей и подробно описывает этапы работы ACMO, включая подготовку "неба", рождение облаков, их перемещение и концентрацию дождя.
preview
Преодоление ограничений машинного обучения (Часть 1): Нехватка совместимых метрик

Преодоление ограничений машинного обучения (Часть 1): Нехватка совместимых метрик

В настоящей статье показано, что часть проблем, с которыми мы сталкиваемся, коренится в слепом следовании «лучшим практикам». Предоставляя читателю простые, основанные на реальном рынке доказательства, мы объясним ему, почему мы должны воздержаться от такого поведения и вместо этого принять передовой опыт, основанный на конкретных областях, если наше сообщество хочет получить хоть какой-то шанс на восстановление скрытого потенциала ИИ.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

В данной статье мы начинаем знакомство с фреймворком SSCNN — современным архитектурным решением для анализа временных рядов, сочетающим в себе точность, структурированность и высокую вычислительную эффективность. Мы последовательно рассмотрим его теоретические аспекты, обратим внимание на ключевые отличия от предшественников и начнем практическую реализацию базовых компонентов в среде MQL5.
preview
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Продолжаем интеграцию методов, предложенных авторами фреймворка Attraos, в торговые модели. Напомню, что данный фреймворк использует концепции теории хаоса для решения задач прогнозирования временных рядов, интерпретируя их как проекции многомерных хаотических динамических систем.
preview
Оптимизатор на основе экологического цикла — Ecological Cycle Optimizer (ECO)

Оптимизатор на основе экологического цикла — Ecological Cycle Optimizer (ECO)

Алгоритм ECO (Ecological Cycle Optimizer) представляет собой интересную метафору переноса экологического круговорота в область метаэвристической оптимизации. Идея разделения популяции на трофические уровни — продуцентов, травоядных, плотоядных, всеядных и редуцентов — создаёт иерархическую структуру поиска, где каждая группа вносит свой вклад в общий процесс оптимизации.
preview
Определение справедливых курсов валют по ППС с помощью данных МВФ

Определение справедливых курсов валют по ППС с помощью данных МВФ

Создание системы анализа валютных курсов на основе паритета покупательной способности (ППС) на Python. Автор разработал алгоритм с 5 методами расчета справедливых курсов, используя данные МВФ. Практическое руководство по фундаментальному анализу валют, обработке экономических данных и интеграции с торговыми системами. Полный код в open source.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Предлагаем познакомиться с алгоритмом разложения временного ряда на смысловые слои и построения из них экономной модели. Мы последовательно показываем архитектуру, практическую реализацию на MQL5/OpenCL и реальные тесты на исторических рыночных данных.
preview
Как опередить любой рынок (Часть III): Индекс расходов Visa

Как опередить любой рынок (Часть III): Индекс расходов Visa

В мире больших данных существуют миллионы альтернативных наборов данных, которые потенциально могут улучшить наши торговые стратегии. В этой серии статей мы рассматриваем наиболее информативные общедоступные наборы данных.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

В статье мы завершаем работу по построению фреймворка SAGDFN средствами MQL5, подводя итоги разработки и демонстрируя результаты его практического тестирования. Объединим реализованные ранее модули в единую систему^ покажем сильные стороны подхода, отметим его уязвимости и обсудим возможные пути доработки.
preview
Скрытые марковские модели для прогнозирования волатильности с учетом тренда

Скрытые марковские модели для прогнозирования волатильности с учетом тренда

Скрытые марковские модели (СММ) — это мощный статистический инструмент, позволяющий выявлять скрытые состояния рынка на основе анализа наблюдаемых ценовых движений. В трейдинге СММ позволяют улучшить прогнозирование волатильности и применяются при разработке трендовых стратегий, моделируя изменения рыночных режимов. В этой статье мы представим пошаговый процесс разработки стратегии следования за трендом, которая использует СММ в качестве фильтра для прогнозирования волатильности.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

В статье мы раскрываем архитектуру SAGDFN — современного фреймворка, способного преобразовать подход к обработке пространственно-временных данных. Он сохраняет ключевую информацию даже в сложных графах и при этом снижает вычислительные издержки.
preview
Алгоритм Бизона — Bison Algorithm (BIA)

Алгоритм Бизона — Bison Algorithm (BIA)

Новый оптимизационный метод Bison Algorithm (BIA) — две стратегии, заимствованные из поведения бизонов, для непрерывных задач с одной целевой функцией. Ключевыми особенностями BIA являются два основополагающих принципа, заимствованных из поведения бизонов, это способность к динамичному перемещению и оборонительная стратегия.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 51): Обучение с подкреплением с помощью SAC

Возможности Мастера MQL5, которые вам нужно знать (Часть 51): Обучение с подкреплением с помощью SAC

Soft Actor Critic (мягкий актер-критик) — это алгоритм обучения с подкреплением, использующий три нейронные сети — сеть актеров и две сети критиков. Такие модели машинного обучения объединены в партнерство "главный-подчиненный", где критики моделируются для повышения точности прогнозов сети актеров. Как обычно, рассмотрим, как эти идеи можно протестировать в качестве пользовательского сигнала советника, собранного с помощью Мастера.
preview
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Предлагаем познакомиться с практической реализацией блока разреженной смеси экспертов для временных рядов в вычислительной среде OpenCL. В статье шаг за шагом разбирается работа маскированной многооконной свёртки, а также организация градиентного обучения в условиях множественных информационных потоков.
preview
Оптимизация наследованием крови — Blood inheritance optimization (BIO)

Оптимизация наследованием крови — Blood inheritance optimization (BIO)

Представляю вашему вниманию мой новый популяционный алгоритм оптимизации BIO (Blood Inheritance Optimization), вдохновленный системой наследования групп крови человека. В этом алгоритме каждое решение имеет свою "группу крови", определяющую способ его эволюции. Как и в природе, группа крови ребенка наследуется по особым правилам, в BIO новые решения получают свои характеристики через систему наследования и мутаций.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети уже меняют подход к анализу рынков, а новые архитектуры открывают ещё больше возможностей. В статье мы завершаем работу с фреймворком SpikingBrain, который отрывает перед нами новые перспективы.
preview
Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC

Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC

В статье исследуется гамильтонов алгоритм Монте-Карло (HMC) — золотой стандарт сэмплирования из сложных многомерных распределений. Представлена полноценная реализация HMC на языке MQL5, которая включает адаптивную настройку матрицы масс, поиск моды апостериорного распределения (MAP) с помощью метода оптимизации L-BFGS и комплексной диагностикой.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении

Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении

Пакетная нормализация — это предварительная обработка данных перед их передачей в алгоритм машинного обучения, например, в нейронную сеть. При этом всегда следует учитывать тип активации, который будет использоваться алгоритмом. Мы рассмотрим различные подходы, которые можно использовать для извлечения выгоды с помощью советника, собранного в Мастере.
preview
Оптимизация коралловых рифов — Coral Reefs Optimization (CRO)

Оптимизация коралловых рифов — Coral Reefs Optimization (CRO)

В данной статье представлен комплексный анализ алгоритма оптимизации коралловых рифов (CRO) — метаэвристического метода, вдохновленного биологическими процессами формирования и развития коралловых рифов. Алгоритм моделирует ключевые аспекты эволюции кораллов: внешнее и внутреннее размножение, оседание личинок, бесполое размножение и конкуренцию за ограниченное пространство в рифе. Особое внимание в работе уделяется усовершенствованной версии алгоритма.
preview
Переосмысливаем классические стратегии (Часть IV): SP500 и казначейские облигации США

Переосмысливаем классические стратегии (Часть IV): SP500 и казначейские облигации США

В этой серии статей мы анализируем классические торговые стратегии с использованием современных алгоритмов, чтобы определить, можно ли улучшить стратегию с помощью искусственного интеллекта (ИИ). В сегодняшней статье мы рассмотрим классический подход к торговле индексом SP500, используя его взаимосвязь с казначейскими облигациями США (US Treasury Notes).
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Регуляризация — это форма штрафования функции потерь пропорционально дискретному весу, применяемому ко всем слоям нейронной сети. Мы оценим значимость некоторых форм регуляризации, протестировав советник, собранный в Мастере.
preview
Алгоритм оптимизации одуванчика — Dandelion Optimizer (DO)

Алгоритм оптимизации одуванчика — Dandelion Optimizer (DO)

Алгоритм оптимизации одуванчика DO превращает простой полёт семени по ветру в стратегию математического поиска. Три фазы - вихревой подъём, дрейф к центру популяции и приземление по траектории Леви - формируют изящную метафору, которая на практике показывает интересные результаты.
preview
Стратегия орла — Eagle Strategy (ES)

Стратегия орла — Eagle Strategy (ES)

Eagle Strategy — алгоритм, имитирующий двухфазную охотничью стратегию орла: глобальный поиск через полеты Леви методом Мантенья, чередуется с интенсивной локальной эксплуатацией светлячкового алгоритма, математически обоснованный подход к балансу между исследованием и эксплуатацией, а также биоинспирированная концепция, объединяющая два природных феномена в единый вычислительный метод.
preview
Алгоритм хаотической оптимизации  — Chaos optimization algorithm (COA)

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA)

Усовершенствованный алгоритм хаотической оптимизации (COA), объединяющий воздействие хаоса с адаптивными механизмами поиска. Алгоритм использует множество хаотических отображений и инерционные компоненты для исследования пространства поиска. Статья раскрывает теоретические основы хаотических методов финансовой оптимизации.
preview
Алгоритм успешного ресторатора —  Successful Restaurateur Algorithm (SRA)

Алгоритм успешного ресторатора — Successful Restaurateur Algorithm (SRA)

Алгоритм успешного ресторатора (SRA) — инновационный метод оптимизации, вдохновленный принципами управления ресторанным бизнесом. В отличие от традиционных подходов, SRA не отбрасывает слабые решения, а улучшает их, комбинируя с элементами успешных. Алгоритм показывает конкурентоспособные результаты и предлагает свежий взгляд на балансирование между исследованием и эксплуатацией в задачах оптимизации.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Темп обучения — это размер шага к цели обучения во многих алгоритмах машинного обучения. В статье мы изучим, какое влияние многочисленные форматы могут оказать на производительность генеративно-состязательной сети (Generative Adversarial Network, GAN) — разновидности нейронной сети, которую мы рассмотрели в одной из предыдущих статей.
preview
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Предлагаем познакомиться с новой реализацией ключевых компонентов Фреймворка GinAR — адаптивного алгоритма для работы с графовыми временными рядами. В статье шаг за шагом разобраны архитектура, алгоритмы прямого прохода и обратного распространения ошибки.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 3): Улучшенная визуализация данных

Интеграция MQL5 с пакетами обработки данных (Часть 3): Улучшенная визуализация данных

В этой статье мы рассмотрим расширенную визуализацию данных, включая такие функции, как интерактивность, многослойные данные и динамические элементы, позволяющие трейдерам более эффективно изучать тренды, закономерности и корреляции.
preview
Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (EV-MGRFlowNet)

Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (EV-MGRFlowNet)

В статье рассматривается перенос архитектуры EV-MGRFlowNet, изначально разработанной для обработки событийных видеоданных, в область финансовых временных рядов. Представленный подход раскрывает новый взгляд на рынок как на поток микродвижений, где цена, объём и ликвидность образуют динамическую структуру, поддающуюся рекуррентному анализу без явного надзора.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.
preview
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Энкодер)

Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Энкодер)

В статье представлена адаптация фреймворка SDformerFlow, обеспечивающая высокую адаптивность за счёт интеграции спайкового внимания с многооконной свёрткой и взвешенным суммированием элементов Query. Архитектура позволяет каждой голове внимания обучать собственные параметры, что повышает точность и чувствительность модели к структуре анализируемых данных.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 57): Обучение с учителем совместно со скользящей средней и стохастическим осциллятором

Возможности Мастера MQL5, которые вам нужно знать (Часть 57): Обучение с учителем совместно со скользящей средней и стохастическим осциллятором

Скользящая средняя и стохастический осциллятор — очень распространенные индикаторы, которые считаются запаздывающими. В минисерии из трех статей, посвященной трем основным формам машинного обучения, мы попытаемся выяснить, оправдана ли эта предвзятость по отношению к этим индикаторам, или же они могут иметь предсказательную силу. Мы проводим анализ с помощью советников, созданных в Мастере.
preview
Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Алгоритм Deterministic Oscillatory Search (DOS) — инновационный метод глобальной оптимизации, сочетающий преимущества градиентных и роевых алгоритмов без использования случайных чисел. Механизм осцилляций и наклонов фитнеса позволяет DOS исследовать сложные пространства поиска детерминированным методом.
preview
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (S3CE-Net)

Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (S3CE-Net)

Приглашаем к знакомству с фреймворком S3CE-Net и его механизмами SSAM и STFS, которые точно обрабатывают спайковые события с учётом каузальности. Модель лёгкая, параллельная и умеет выявлять сложные связи во времени и пространстве.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 45): Обучение с подкреплением с помощью метода Монте-Карло

Возможности Мастера MQL5, которые вам нужно знать (Часть 45): Обучение с подкреплением с помощью метода Монте-Карло

Монте-Карло — четвертый алгоритм обучения с подкреплением, который мы рассматриваем в контексте его реализации в советниках, собранных с помощью Мастера. Хотя алгоритм основан на случайной выборке, он предоставляет обширные возможности моделирования.
preview
Знакомство с кривыми рабочих характеристик приемника (ROC-кривыми)

Знакомство с кривыми рабочих характеристик приемника (ROC-кривыми)

ROC-кривые — графические представления, используемые для оценки эффективности классификаторов. Хотя графики ROC относительно просты, на практике при их использовании существуют распространенные заблуждения и подводные камни. Цель данной статьи — познакомить читателя с графиками ROC как инструментом для практикующих специалистов, стремящихся разобраться в оценке эффективности классификаторов.