
Упрощаем торговлю на новостях (Часть 3): Совершаем сделки
В этой статье наш советник новостной торговли начнет открывать сделки на основе экономического календаря, хранящегося в нашей базе данных. Кроме того, мы улучшим графику советника, чтобы отображать более актуальную информацию о предстоящих событиях экономического календаря.

Автооптимизация тейк-профитов и параметров индикатора с помощью SMA и EMA
В статье представлен продвинутый советник для торговли на рынке Форекс, сочетающий машинное обучение с техническим анализом. Он предназначен для торговли акциями Apple с использованием адаптивной оптимизации, управления рисками и множества стратегий. Тестирование на исторических данных показывает многообещающие результаты, но также и значительные просадки, что указывает на потенциал для дальнейшего совершенствования.

Машинное обучение и Data Science (Часть 28): Прогнозирование множества будущих значений для EURUSD
Многие модели искусственного интеллекта заточены на прогнозирование одного единственного будущего значения. В этой статье мы посмотрим, как использовать модели машинного обучения для прогнозирования множества будущих значений. Такой подход, называемый многошаговым прогнозированием, позволяет предсказывать не только цену закрытия на завтра, но и на послезавтра и так далее. Несомненное преимущество многошагового прогнозирования для трейдеров и аналитиков данных — более широкий спектр информации для возможностей стратегического планирования.

Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5
В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности
Расширение панели графического интерфейса на MQL5 с помощью динамических функций может существенно улучшить торговый опыт пользователей. Благодаря включению интерактивных элементов, эффектов наведения и обновлению данных в реальном времени эта панель становится мощным инструментом современного трейдера.

Реализация советника Deus: Автоматическая торговля с RSI и скользящими средними в MQL5
В статье описываются шаги по внедрению советника Deus на основе индикаторов RSI и скользящей средней для управления автоматической торговлей.

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (I) - Тонкая настройка
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.

Биржевые данные без посредников: подключаем MetaTrader 5 к MOEX через ISS API
В статье предложено решение для интеграции MetaTrader 5 с веб-сервисом MOEX ISS. Прилагаются утилиты для автоматической генерации исходных кодов на основе справочника API и индекса основных элементов сервиса.

Построение модели ограничения тренда свечей (Часть 7): Улучшаем нашу модель для разработки советника
В этой статье мы подробно рассмотрим подготовку нашего индикатора для разработки советника. В ходе обсуждения будут рассмотрены дальнейшие усовершенствования текущей версии индикатора с целью повышения его точности и функциональности. Кроме того, мы внедрим новые функции, которые будут отмечать точки выхода, устранив ограничение предыдущей версии, которая определяла только точки входа.

Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)
В данной статье рассмотрим новый популяционный алгоритм оптимизации CPA (Cyclic Parthenogenesis Algorithm), вдохновленный уникальной репродуктивной стратегией тлей. Алгоритм сочетает два механизма размножения — партеногенез и половое, а также использует колониальную структуру популяции с возможностью миграции между колониями. Ключевыми особенностями алгоритма являются адаптивное переключение между различными стратегиями размножения и система обмена информацией между колониями через механизм перелета.

Введение в MQL5 (Часть 8): Руководство для начинающих по созданию советников (II)
В этой статье рассматриваются частые вопросы, которые начинающие программисты задают на форуме MQL5. Также демонстрируются практические решения. Мы научимся совершать основные действия: покупку и продажу, получение цен свечей, а также управление торговыми аспектами, включая торговые лимиты, периоды и пороговые значения прибыли/убытка. В статье представлены пошаговые инструкции, которые помогут вам лучше понять и реализовать обсуждаемые концепции на MQL5.

Создание советника Daily Drawdown Limiter на языке MQL5
В статье подробно рассматриваются возможности реализации советника на основе торгового алгоритма. Это поможет автоматизировать систему на MQL5 и взять под контроль дневную просадку.

MetaTrader 5 на macOS
Мы подготовили специальный установщик торговой платформы MetaTrader 5 для macOS. Это полноценный визард, позволяющий установить приложение как нативное. Он выполняет все необходимые действия: определяет вашу систему, скачивает и устанавливают последнюю версию Wine для нее, настраивает его, а затем устанавливает внутри него MetaTrader. Все происходит в автоматическом режиме, вам нужно лишь дождаться окончания установки, после чего вы можете сразу же приступать к полноценной работе с платформой.

Разработка советника на основе стратегии прорыва диапазона консолидации на MQL5
В статье описываются шаги по созданию торгового советника, который извлекает выгоду из ценовых прорывов после периодов консолидации. Определяя диапазоны консолидации и устанавливая уровни прорыва, трейдеры могут автоматизировать свои торговые решения на основе этой стратегии. Советник призван обеспечить четкие точки входа и выхода, избегая ложных пробоев.

Полиномиальные модели в трейдинге
Эта статья посвящена ортогональным многочленам. Их применение может стать основой для более точного и эффективного анализа рыночной информации, благодаря чему, трейдер сможет принимать более обоснованные решения.

Индикатор силы и направления тренда на 3D-барах
Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.

Использование алгоритма машинного обучения PatchTST для прогноза ценовых движений на следующие 24 часа
В этой статье мы применим относительно сложный нейросетевой алгоритм PatchTST, реализованный в 2023 году, для прогнозирования ценовых движений на ближайшие 24 часа. Воспользуемся официальным репозиторием, внесем небольшие изменения, обучим модель для EURUSD и применим ее для формирования будущих прогнозов на языке Python или MQL5.

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 1): Создание панели
В статье рассматриваются основные этапы создания и реализации панели графического пользовательского интерфейса (Graphical User Interface, GUI) с помощью языка MetaQuotes Language 5 (MQL5). Пользовательские панели утилит повышают качество взаимодействия с системой при торговле, упрощая типовые задачи и визуализируя важную торговую информацию. Создавая пользовательские панели, трейдеры могут оптимизировать рабочий процесс и сэкономить время при торговых операциях.

Критерии тренда в трейдинге
Тренды являются важной частью многих торговых стратегий. В этой статье мы рассмотрим некоторые инструменты, используемые для определения трендов и их характеристик. Понимание и правильная интерпретация трендов могут значительно повысить эффективность трейдинга и минимизировать риски.

Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)
В статье подробно рассматриваются ключевые компоненты и инновации алгоритма оптимизации ATA, представляющего собой эволюционный метод с уникальной двойной системой поведения, которая адаптируется в зависимости от ситуации. Используя скрещивание для углубленного исследования, и миграцию для поиска в случае застревания в локальных оптимумах, ATA сочетает в себе индивидуальное и социальное обучение.

Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть II)
В статье подробно рассматривается интеграция уведомлений индикаторов MetaTrader 5 в Telegram с использованием возможностей MQL5, Python и API Telegram Bot. Вы сможете применить полученную информацию в своих проектах.

Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления
В статье представлено подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии поддержки и сопротивления. Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа поведения ценового диапазона до управления рисками.

Возможности Мастера MQL5, которые вам нужно знать (Часть 23): CNN
Свёрточные нейронные сети (Convolutional Neural Networks, CNNs) — ещё один алгоритм машинного обучения, который, как правило, специализируется на разложении многомерных наборов данных на ключевые составные части. Мы рассмотрим принцип его работы и исследуем возможное применение для трейдеров в очередном классе сигналов Мастера MQL5.

Прогнозирование временных рядов с использованием нейронных сетей LSTM: Нормализация цены и токенизация времени
В статье описывается простая стратегия нормализации рыночных данных с использованием дневного диапазона и обучения нейронной сети для улучшения рыночных прогнозов. Разработанные модели могут использоваться совместно с существующими системами технического анализа или отдельно для прогнозирования общего направления рынка. Структура, изложенная в этой статье, может быть дополнительно усовершенствована техническим аналитиком для разработки моделей, подходящих как для ручных, так и для автоматизированных торговых стратегий.

Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей
На валютном рынке сложно предсказать будущие тренды, не имея представления о прошлом. Очень немногие модели машинного обучения способны делать прогнозы на будущее, учитывая прошлые значения. В этой статье мы посмотрим, как можно использовать классические (не временные ряды) модели искусственного интеллекта, чтобы понять рынок.

Циклы и трейдинг
Эта статья посвящена использованию циклов в трейдинге. В ней мы постараемся разобраться, как можно построить торговую стратегию, основываясь на циклических моделях.

Разработка стратегии Zone Recovery Martingale на MQL5
В статье подробно рассматриваются шаги для создания советника на основе торгового алгоритма Zone Recovery. Это позволяет автоматизировать систему, экономя время алготрейдеров.

Изучение MQL5 — от новичка до профи (Часть VI): Основы написания советников
Статья продолжает цикл для начинающих. Здесь будут рассмотрены основные принципы построения советников. Мы создадим два советника: первый будет торговать без индикаторов, отложенными ордерами, второй — на основе стандартного индикатора MA, торгующий с помощью сделок по текущей цене. Здесь я предполагаю, что вы уже не совсем новичок и владеете материалом предыдущих статей относительно свободно.

Объемный нейросетевой анализ как ключ к будущим трендам
Статья исследует возможность улучшения прогнозирования цен на основе анализа объема торгов, интегрируя принципы технического анализа с архитектурой LSTM нейронных сетей. Особое внимание уделяется выявлению и интерпретации аномальных объемов, использованию кластеризации и созданию признаков на основе объемов и их определения в контексте машинного обучения.

Торговый инструментарий MQL5 (Часть 1): Разработка EX5-библиотеки для управления позициями
Мы рассмотрим создание инструментария разработчика для управления позициями с помощью MQL5. В этой статье я покажу, как создать библиотеку функций (ex5), которая будет выполнять как простые, так и сложные операции по управлению позициями, включая автоматическую обработку и сообщение о различных ошибках, возникающих при управлении позициями с помощью MQL5.

Быстрый тестер торговых стратегий на Python с использованием Numba
В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.

Пошаговая инструкция для торговли по стратегии Break of Structure (BoS)
Подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии Break of Structure (BoS, прорыв структуры). Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа ценовых уровней поддержки и сопротивления до управления рисками

Обучение многослойного персептрона с помощью алгоритма Левенберга-Марквардта
В статье представлена реализация алгоритма Левенберга-Марквардта для обучения нейронных сетей прямого распространения. Проведен сравнительный анализ результативности с алгоритмами из библиотеки scikit-learn Python. Предварительно обсуждаются более простые методы обучения такие как градиентный спуск, градиентный спуск с импульсом и стохастический градиентный спуск.

Методы оптимизации библиотеки ALGLIB (Часть I)
В статье познакомимся с методами оптимизации библиотеки ALGLIB для MQL5. Статья включает простые и наглядные примеры применения ALGLIB для решения задач оптимизации, что сделает процесс освоения методов максимально доступным. Мы подробно рассмотрим подключение таких алгоритмов, как BLEIC, L-BFGS и NS, и на их основе решим простую тестовую задачу.

Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5
Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.

Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5
Создаем легальную в глазах брокеров арбитражную систему, которая создает тысячи синтетических цен на рынке Форекс, анализирует их, и успешно торгует в прибыль.

Оптимизация африканскими буйволами — African Buffalo Optimization (ABO)
Статья посвящена алгоритму оптимизации африканскими буйволами (ABO), метаэвристическому подходу, разработанному в 2015 году на основе уникального поведения этих животных. В статье подробно описаны этапы реализации алгоритма и его эффективность в поиске решений сложных задач, что делает его ценным инструментом в области оптимизации.

Введение в MQL5 (Часть 7): Руководство для начинающих по созданию советников и использованию кода от ИИ в MQL5
В этой статье мы представим полное руководство для начинающих по созданию советников (EA) на MQL5. Вы найдете пошаговые инструкции по созданию экспертов с использованием псевдокода и возможностей кода, сгенерированного ИИ. Эта статья предназначена для тех, кто только начинает свой пусть в алготрейдинге, а также для всех, кто хочет улучшить навыки разработки эффективных советников.

Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода
Продолжим автоматизировать шаги, которые ранее мы выполняли вручную. В этот раз вернёмся к автоматизации второго этапа, то есть выбора оптимальной группы одиночных экземпляров торговых стратегий, дополнив его возможностью учитывать результаты экземпляров на форвард-периоде.