Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Оптимизация нейробоидами — Neuroboids Optimization Algorithm 2 (NOA2)

Оптимизация нейробоидами — Neuroboids Optimization Algorithm 2 (NOA2)

Новый авторский алгоритм оптимизации NOA2 (Neuroboids Optimization Algorithm 2), объединяет принципы роевого интеллекта с нейронным управлением. NOA2 сочетает механику поведения стаи нейробоидов с адаптивной нейронной системой, позволяющей агентам самостоятельно корректировать свое поведение в процессе поиска оптимума. Алгоритм находится на стадии активной разработки и демонстрирует потенциал для решения сложных задач оптимизации.
preview
Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (Энкодер)

Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (Энкодер)

В статье представлена комплексная архитектура Энкодера STE-FlowNet, объединяющая стековую память, рекуррентную обработку и корреляционный механизм для извлечения скрытых рыночных зависимостей. Показано, как эти модули последовательно интегрируются в единую вычислительную цепочку, способную осуществлять разносторонний анализ временных рядов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Данные экономического календаря по умолчанию недоступны для тестирования с помощью советников в тестере стратегий. Мы рассмотрим, как базы данных могут помочь обойти это ограничение. В частности, мы увидим, как можно использовать базы данных SQLite для архивирования новостей Экономического календаря, чтобы советники, собранные с помощью Мастера, могли использовать их для генерации торговых сигналов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 36): Q-обучение с цепями Маркова

Возможности Мастера MQL5, которые вам нужно знать (Часть 36): Q-обучение с цепями Маркова

Обучение с подкреплением — один из трех основных принципов машинного обучения, наряду с обучением с учителем и без учителя. Поэтому возникает необходимость в оптимальном управлении или изучении наилучшей долгосрочной политики, которая наилучшим образом соответствует целевой функции. Именно на этом фоне мы исследуем его возможную роль в информировании процесса обучения MLP советника, собранного в Мастере.
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Окончание)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Окончание)

В статье подробно рассмотрена интеграция подходов фреймворка ST-Expert в архитектуру Extralonger, позволяющая одновременно анализировать временные и пространственные представления данных. Представлены результаты тестирования на реальных исторических данных, демонстрирующие эффективность модели и её устойчивость к рыночным аномалиям. Описана модульная структура фреймворка, обеспечивающая воспроизводимость, гибкость для исследований и возможность поэтапной оптимизации компонентов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 41): Сети Deep-Q

Возможности Мастера MQL5, которые вам нужно знать (Часть 41): Сети Deep-Q

Сеть Deep-Q (Deep-Q-Network) — это алгоритм обучения с подкреплением, который вовлекает нейронные сети в прогнозирование следующего значения Q и идеального действия в процессе обучения модуля машинного обучения. Мы уже рассматривали альтернативный алгоритм обучения с подкреплением — Q-обучение. Таким образом, в данной статье представлен еще один пример того, как многослойный перцептрон (multi-layer perceptron, MLP), обученный с помощью обучения с подкреплением, может использоваться в пользовательском классе сигналов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 22): Условные генеративно-состязательные сети (cGAN)

Возможности Мастера MQL5, которые вам нужно знать (Часть 22): Условные генеративно-состязательные сети (cGAN)

Генеративно-состязательные сети — это пара нейронных сетей, которые обучаются друг на друге для получения более точных результатов. Мы рассмотрим условный тип этих сетей в контексте их возможного применения в прогнозировании финансовых временных рядов в рамках класса сигналов советника.
preview
Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель

Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель

Продолжаем попытки дешифровать движения цен... Как насчет лингвистического анализа "словаря рынка", который мы получим, преобразовав бинарный код цены в BIP39? В этой статье мы углубимся в инновационный подход к анализу биржевых данных и рассмотрим, как современные методы обработки естественного языка могут быть применены к языку рынка.
preview
Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5

Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5

Статья представляет реализацию алгоритма выбора признаков, описанного в научной работе "FREL: Стабильный алгоритм выбора признаков" (FREL: A stable feature selection algorithm). Сам алгоритм называется "Взвешивание признаков как регуляризованное обучение на основе энергии" (Feature weighting as regularized energy based learning).
preview
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)

Продолжаем знакомство с фреймворком Mamba4Cast. И сегодня мы погрузимся в практическую реализацию предложенных подходов. Mamba4Cast создавался не для долгого прогрева на каждом новом временном ряде, а для мгновенного включения в работу. Благодаря идее Zero‑Shot Forecasting модель способна сразу выдавать качественные прогнозы на реальных данных без дообучения и тонкой настройки гиперпараметров.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Основанная на плотности пространственная кластеризация для приложений с шумами (Density Based Spatial Clustering for Applications with Noise, DBSCAN) - это неконтролируемая форма группировки данных, которая практически не требует каких-либо входных параметров, за исключением всего двух, что по сравнению с другими подходами, такими как k-средние, является преимуществом. Разберемся в том, как это может быть полезно в тестировании и торговле с применением советников, собранных в Мастере.
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASAAT, который использует ансамбль агентов для перекрестного анализа мультимодального временного ряда в разных масштабах представления данных. И сегодня мы доведем до логического завершения начатую ранее работу по реализации подходов данного фреймворка средствами MQL5.
preview
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)

Предлагаем познакомиться с архитектурой ACEFormer — современным решением, сочетающим эффективность вероятностного внимания и адаптивное разложение временных рядов. Материал будет полезен тем, кто ищет баланс между вычислительной производительностью и точностью прогноза на финансовых рынках.
preview
Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

В очередной статье мы познакомимся с алгоритмом Anarchic Society Optimization (ASO) и обсудим, как алгоритм, основанный на иррациональном и авантюрном поведении участников анархического общества - аномальной системы социального взаимодействия, свободной от централизованной власти и различного рода иерархий способен исследовать пространство решений и избегать ловушек локального оптимума. В статье будет представлена унифицированная структура ASO, применимая как к непрерывным, так и к дискретным задачам.
preview
Анализ влияния погоды на валюты аграрных стран с использованием Python

Анализ влияния погоды на валюты аграрных стран с использованием Python

Как связана погода и валютный рынок? В классической экономической теории долгое время не признавали влияние таких факторов на поведение рынка. Но все изменилось. Давайте попробуем найти связи в состоянии погоды и положения аграрных валют на рынке.
preview
Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Стратегия Darvas Box Breakout, созданная Николасом Дарвасом, представляет собой подход в технической торговле, который выявляет потенциальные сигналы на покупку, когда цена акций поднимается выше установленного диапазона «коридора», что указывает на сильный восходящий импульс. В этой статье мы применим эту стратегическую концепцию в качестве примера для изучения трех передовых методов машинного обучения. К ним относятся использование модели машинного обучения для генерации сигналов вместо фильтрации сделок, применение непрерывных сигналов вместо дискретных и использование для подтверждения сделок моделей, обученных на разных таймфреймах.
preview
Алгоритм искусственного орошения — Artificial Showering Algorithm (ASHA)

Алгоритм искусственного орошения — Artificial Showering Algorithm (ASHA)

В статье представлен Алгоритм Искусственного Орошения (ASHA) – новый метаэвристический метод, разработанный для решения общих задач оптимизации. Основанный на моделировании процессов потоков и накопления воды, этот алгоритм выстраивает концепцию идеального поля, в котором каждая единица ресурса (вода) вызывается для поиска оптимального решения. Узнайте, как ASHA адаптирует принципы потока и накопления для эффективного распределения ресурсов в условиях поискового пространства, а также познакомьтесь с его реализацией и итогами тестирования.
preview
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)

Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)

Предлагаем познакомиться с инновационным подходом к прогнозированию временных рядов с пропущенными данными на базе фреймворка GinAR. В статье показана реализация ключевых компонентов на OpenCL, что обеспечивает высокую производительность. В следующей публикации мы подробно рассмотрим интеграцию этих решений в MQL5. Это позволит понять, как применять метод на практике в трейдинге.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

В статье представлен фреймворк BAT, обеспечивающий точное и адаптивное моделирование временной динамики. Используя двустороннюю временную корреляцию, BAT превращает последовательные изменения рыночных данных в структурированные, информативные представления. Модель сочетает высокую вычислительную эффективность с возможностью глубокой интеграции в торговые системы, позволяя выявлять как краткосрочные, так и долгосрочные паттерны движения.
preview
Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)

Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)

В данной статье мы представляем алгоритм арифметической оптимизации (Arithmetic Optimization Algorithm, AOA), который основывается на простых арифметических операциях: сложении, вычитании, умножении и делении. Эти базовые математические действия служат основой для поиска оптимальных решений в различных задачах.
preview
Нейросети в трейдинге: Управляемая сегментация

Нейросети в трейдинге: Управляемая сегментация

Предлагаем познакомиться с методом комплексного мультимодального анализа взаимодействия и понимания признаков.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)

Продолжаем изучение фреймворка мультизадачного обучения на основе ResNeXt, который отличается модульностью, высокой вычислительной эффективностью и способностью выявлять устойчивые паттерны в данных. Использование единого энкодера и специализированных "голов" снижает риск переобучения модели и повышает качество прогнозов.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)

Познакомьтесь с Mantis — лёгкой фундаментальной моделью для классификации временных рядов на базе Transformer с контрастным предварительным обучением и гибридным вниманием, обеспечивающими рекордную точность и масштабируемость.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

В этой статье мы продолжаем реализацию фреймворка BAT средствами MQL5, показывая, как двунаправленная корреляция и модуль SATMA позволяют анализировать динамику рынка в контексте текущего состояния. Представлены ключевые архитектурных решения, позволяющие адаптировать фреймворк к анализу финансовых данных.
preview
Удаленный профессиональный риск-менеджер Forex на Python

Удаленный профессиональный риск-менеджер Forex на Python

Делаем удаленный профессиональный риск-менеджер Для Forex на Python, разворачиваем его на сервере по шагам. В процессе статьи поймем, как программно управлять рисками на Форекс, и как больше не слить депозит на Форекс.
preview
Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)

Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)

Фреймворк Actor–Director–Critic — это эволюция классической архитектуры агентного обучения. В статье представлен практический опыт его реализации и адаптации к условиям финансовых рынков.
preview
Символьное уравнение прогнозирования цены с использованием SymPy

Символьное уравнение прогнозирования цены с использованием SymPy

Статья описывает интересный подход к алготрейдингу, основанный на символьных математических уравнениях вместо традиционных "черных ящиков" машинного обучения. Автор показывает, как преобразовать непрозрачные нейросети в читаемые математические формулы через библиотеку SymPy и полиномиальную регрессию, что позволяет полностью понимать логику принятия торговых решений. Подход сочетает вычислительную мощь ML с прозрачностью классических методов, давая трейдеру возможность анализировать, корректировать и адаптировать модели в реальном времени.
preview
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Представляем адаптацию фреймворк E-STMFlow — современное решение для построения автономных торговых систем. В статье завершаем реализацию подходов, предложенных авторами фреймворка. Результаты тестирования демонстрируют стабильный рост капитала, минимальные просадки и предсказуемое распределение рисков, подтверждая практическую эффективность подхода и открывая перспективы дальнейшей оптимизации стратегии.
preview
Теория категорий в MQL5 (Часть 21): Естественные преобразования с помощью LDA

Теория категорий в MQL5 (Часть 21): Естественные преобразования с помощью LDA

Эта статья, 21-я в нашей серии, продолжает рассмотрение естественных преобразований и того, как их можно реализовать с помощью линейного дискриминантного анализа. Как и в предыдущей статье, реализация представлена в формате класса сигнала.
preview
Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков позволяет получить картину мировой ликвидности рынка Форекс и ключевых валют. Мы объединяем данные ФРС, ЕЦБ, BOJ и PBoC в композитный индекс и применяем машинное обучение для выявления скрытых закономерностей. Такой подход превращает сырой поток данных в реальные торговые сигналы, соединяя фундаментальный и технический анализ.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)

Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)

Продолжаем изучение метода Иерархического Векторного Transformer. И в данной статье мы завершим построение модели. А также проведем её обучение и тестирование на реальных исторических данных.
preview
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)

Мы продолжаем построение модели иерархического двухбашенного трансформера Hidformer, который предназначен для анализа и прогнозирования сложных многомерных временных рядов. В данной статье мы доведем начатую ранее работу до логического завершения с тестированием модели на реальных исторических данных.
preview
Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)

Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)

Продолжаем знакомство с инновационным фреймворком Chimera — двухмерной моделью пространства состояний, использующей нейросетевые технологии для анализа многомерных временных рядов. Этот метод обеспечивает высокую точность прогнозирования при низких вычислительных затратах.
preview
Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Предлагаем познакомиться с фреймворком FinCon, который представляет собой многоагентную систему на основе больших языковых моделей (LLM). Фреймворк использует концептуальное вербальное подкрепление для улучшения принятия решений и управления рисками, что позволяет эффективно выполнять разнообразные финансовые задачи.
preview
Нейросети в трейдинге: Модели многократного уточнения прогнозов (RAFT)

Нейросети в трейдинге: Модели многократного уточнения прогнозов (RAFT)

Фреймворк RAFT предлагает принципиально иной подход к прогнозированию динамики рынка — не как разовый снимок, а как итеративное уточнение состояния в реальном времени. Он одновременно учитывает локальные и глобальные изменения, сохраняя высокую точность даже при сложных ценовых структурах.
preview
Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов

Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов

В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить их с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких таймфреймов, чтобы оценить, можно ли улучшить эту стратегию с помощью ИИ.
preview
Инженерия признаков с Python и MQL5 (Часть I): AI-модели для долгосрочного прогнозирования по скользящим средним

Инженерия признаков с Python и MQL5 (Часть I): AI-модели для долгосрочного прогнозирования по скользящим средним

Скользящие средние являются, безусловно, самыми эффективными индикаторами для прогнозирования моделями ИИ. Однако точность результатов можно еще больше повысить, если перед этим соответственным образом преобразовать данные. В этой статье мы поговорим о создании AI-моделей, которые могут прогнозировать в более отдаленное будущее без существенного снижения уровня точности. В очередной раз мы с вами убедимся, насколько полезны скользящие средние.
preview
Анализ временных разрывов цен в MQL5 (Часть II): Создаем тепловую карту распределения ликвидности во времени

Анализ временных разрывов цен в MQL5 (Часть II): Создаем тепловую карту распределения ликвидности во времени

Подробное руководство по созданию индикатора тепловой карты для MetaTrader 5, который визуализирует временное распределение цены в виде тепловой карты. Статья раскрывает математическую основу анализа временной плотности, где каждый ценовой уровень окрашивается от красного (минимальное время пребывания) до синего (максимальное время пребывания).
preview
Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

В статье подробно рассматриваются ключевые компоненты и инновации алгоритма оптимизации ATA, представляющего собой эволюционный метод с уникальной двойной системой поведения, которая адаптируется в зависимости от ситуации. Используя скрещивание для углубленного исследования, и миграцию для поиска в случае застревания в локальных оптимумах, ATA сочетает в себе индивидуальное и социальное обучение.