Статьи по автоматизации торговых систем на языке MQL5

icon

Прочитайте статьи по торговым системам, которые основаны на самых разнообразных идеях. Вы узнаете как использовать  статистические методы и паттерны на японских свечах, как фильтровать сигналы и для чего нужны семафорные индикаторы.

С помощью Мастера MQL5 вы научитесь создавать робота без программирования для быстрой проверки торговых идей, а также узнаете, что такое генетические алгоритмы.

Новая статья
последние | лучшие
preview
Торговый инструментарий MQL5 (Часть 5): Расширение EX5-библиотеки для управления историей с помощью функций позиции

Торговый инструментарий MQL5 (Часть 5): Расширение EX5-библиотеки для управления историей с помощью функций позиции

В этой статье мы узнаем, как создавать экспортируемые EX5-функции для эффективного запроса и сохранения исторических данных о позициях. В этом пошаговом руководстве мы расширим EX5-библиотеку для управления историей (History Management), разработав модули, которые извлекают ключевые свойства последней закрытой позиции. К ним относятся чистая прибыль, продолжительность сделки, стоп-лосс и тейк-профит в пипсах, значения прибыли и другие важные данные.
preview
Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

В этой статье описывается работа со встроенными индикаторами в MQL5, отдельное внимание уделяется созданию советника на основе индикатора RSI с использованием проектного подхода. Вы научитесь получать и использовать значения RSI, обрабатывать колебания ликвидности и улучшать визуализацию торговли с помощью графических объектов. Кроме того, в статье рассматривается еще один важный аспект. Сюда относится риск в процентах от депозита, соотношение риска и доходности, а также модификация риска на ходу для защиты прибыли.
preview
Анализ почасового движения торговых символов и их спредов в MetaTrader 5

Анализ почасового движения торговых символов и их спредов в MetaTrader 5

Индикатор индекса сезонности ProSpread со скользящим средним, как инструмент технического анализа, который выявляет сезонные закономерности ценового движения, анализирует поведение цены в определенные часы торговли, может работать как с одним инструментом, так и со спредом между двумя активами, а также визуализирует статистическую вероятность направленных движений.
preview
Нейросетевой торговый советник на базе PatchTST

Нейросетевой торговый советник на базе PatchTST

Статья представляет революционную архитектуру PatchTST — специально адаптированный трансформер для анализа финансовых временных рядов, который разбивает рыночные данные на патчи из 16 баров для эффективной обработки. Подробно рассматривается полная реализация торгового робота в MQL5 — от математических основ и структур данных до готового Expert Advisor с системами управления рисками и непрерывного обучения.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

В статье описана практическая реализация фреймворка HimNet на базе MQL5, который готов к интеграции в автоматическую торговлю. Мы показываем, как метапараметры, адаптированные под гетерогенность, превращают модель в универсальный инструмент, способный справляться с изменчивой волатильностью.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 10): Золотой крест и крест смерти

Построение модели для ограничения диапазона сигналов по тренду (Часть 10): Золотой крест и крест смерти

Знаете ли вы, что стратегии "Золотой крест" (Golden Cross) и "Крест смерти" (Death Cross), основанные на пересечении скользящих средних, являются одними из самых надежных индикаторов для определения долгосрочных рыночных трендов? "Золотой крест" сигнализирует о бычьем тренде, когда более короткая скользящая средняя пересекает более длинную снизу вверх, в то время как "крест смерти" указывает на медвежий тренд, когда короткая скользящая средняя опускается ниже длинной. Несмотря на их простоту и эффективность, ручное применение этих стратегий часто приводит к упущенным возможностям или задержке сделок.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

В этой статье мы подробно рассматриваем алгоритмы реализации ключевых компонентов фреймворка HimNet. Демонстрируем, как при минимальном числе обучаемых компонентов достигается высокая согласованность и управляемость всей системы. Представленная реализация отличается компактностью и прозрачностью, что облегчает её адаптацию к реальным рыночным задачам.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Предлагаем познакомиться с фреймворком HimNet, который сочетает гибкость пространственно-временной адаптации с высокой вычислительной эффективностью, позволяя получать точные и стабильные прогнозы на финансовых временных рядах. В статье подробно показано, как его ключевые компоненты взаимодействуют между собой, превращая сложные алгоритмы в управляемую архитектуру.
preview
Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Революционный подход к машинному обучению в трейдинге через квантовые вычисления. Статья демонстрирует практическую реализацию адаптивной системы QRC с постоянным дообучением для прогнозирования рыночных движений в реальном времени.
preview
Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

В этой статье мы рассмотрим, как улучшить и более эффективно применять концепции, изложенные в предыдущей статье, используя мощные библиотеки графических элементов управления MQL5. Я шаг за шагом проведу вас через процесс создания полностью функционального графического интерфейса, объясняя стоящий за ним план проектирования, а также назначение и принцип работы каждого используемого метода. Кроме того, в конце статьи мы протестируем созданную нами панель, чтобы убедиться в ее корректной работе и соответствии заявленным целям.
preview
Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Представляем вашему вниманию завершающий этап реализации и тестирования фреймворка TQNet, в котором теория встречается с реальной торговой практикой. Мы пройдём путь от исторического обучения до стресс-теста на свежих рыночных данных, оценивая устойчивость и точность модели. Итоговые результаты — это не только сухие цифры, но и наглядная демонстрация прикладной ценности предложенного подхода.
preview
Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Фреймворк TQNet открывает новые возможности в моделировании и прогнозировании финансовых временных рядов, сочетая модульность, гибкость и высокую производительность. В статье раскрывается возможность реализации сложных механизмом работы с глобальными корреляциями, включая продвинутые методы инициализации параметров.
preview
Моделирование рынка (Часть 04): Создание класса C_Orders (I)

Моделирование рынка (Часть 04): Создание класса C_Orders (I)

В данной статье мы начнем создание класса C_Orders, чтобы иметь возможность отправлять ордеры на торговый сервер. Мы будем делать это понемногу, поскольку наша цель состоит в том, чтобы подробно объяснить, как это будет происходить с помощью системы обмена сообщениями.
preview
Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Статья исследует революционную архитектуру нейронной сети Mamba/SSM для прогнозирования финансовых временных рядов. Представлена полная реализация на MQL5 современной альтернативы Transformer с линейной сложностью O(N) вместо квадратичной O(N²). Детально рассмотрены селективные State Space Models, hardware-aware оптимизации, patching техники и продвинутые методы обучения AdamW. Включены практические результаты тестирования, показавшие увеличение точности с 62% до 71% при снижении времени обучения с 45 до 8 минут. Представлен готовый торговый советник с автообучением и адаптивным риск-менеджментом для MetaTrader 5.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Предлагаем познакомиться с алгоритмом разложения временного ряда на смысловые слои и построения из них экономной модели. Мы последовательно показываем архитектуру, практическую реализацию на MQL5/OpenCL и реальные тесты на исторических рыночных данных.
preview
Риск-менеджер для торговых роботов (Часть I): Включаемый файл контроля рисков для советников

Риск-менеджер для торговых роботов (Часть I): Включаемый файл контроля рисков для советников

Трейдинг характеризуется высокими требованиями к дисциплине риск-менеджмента. Настоящая работа представляет анализ основных причин неудач трейдеров и предлагает техническое решение в виде класса CEnhancedRiskManager для платформы MQL5. Включает практическое тестирование на агрессивном сеточном советнике.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (III) – Настройка адаптера

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (III) – Настройка адаптера

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

В этой статье продолжаем практическое знакомство с SSCNN — архитектурным решением нового поколения, способным работать с фрагментированными временными рядами. Вместо слепого масштабирования — разумная модульность, внимание к деталям и точечная нормализация. Мы шаг за шагом создаём вычислительные блоки в среде MQL5 и закладываем основу для надёжного прогнозного анализа.
preview
Моделирование рынка (Часть 02): Кросс-ордера (II)

Моделирование рынка (Часть 02): Кросс-ордера (II)

В отличие от того, что было в предыдущей статье, здесь мы осуществим проверку опции выбора на советнике. Хотя это еще не окончательное решение, но пока этого будет достаточно. С помощью данной статьи, вы сможете понять, как реализовать одно из возможных решений.
preview
Создание прибыльной торговой системы (Часть 1): Количественный подход

Создание прибыльной торговой системы (Часть 1): Количественный подход

Многие трейдеры оценивают стратегии, основываясь на краткосрочных результатах, часто слишком рано отказываясь от прибыльных систем. Однако долгосрочная прибыльность зависит от положительного ожидания посредством оптимизированного Win Rate и соотношения доходности к риску (Risk-Reward), а также дисциплины при выборе размера позиции. Эти принципы можно проверить с помощью метода Монте-Карло в Python с использованием проверенных на исторических данных показателей, чтобы оценить, является ли стратегия надежной или со временем может потерпеть неудачу.
preview
Моделирование рынка (Часть 01): Кросс-ордера (I)

Моделирование рынка (Часть 01): Кросс-ордера (I)

Сегодня мы начнем второй этап, на котором рассмотрим вопрос о системе репликации/моделирования рынка. Для начала мы покажем возможное решение для кросс-ордеров. Я покажу решение, но оно еще не окончательное, это будет вариант решения проблемы, решить которую предстоит в ближайшем будущем.
preview
Автоматизация торговых стратегий с помощью MQL5 (Часть 2): Система прорыва Кумо с Ichimoku и Awesome Oscillator

Автоматизация торговых стратегий с помощью MQL5 (Часть 2): Система прорыва Кумо с Ichimoku и Awesome Oscillator

В этой статье мы создаем советник, который автоматизирует стратегию прорыв Кумо (Kumo Breakout) с использованием индикатора Ichimoku Kinko Hyo и Awesome Oscillator. Мы рассмотрим инициализацию хэндлов индикаторов, обнаружение условий прорыва и автоматизацию входов и выходов из сделок. Кроме того, мы внедрим трейлинг-стопы и логику управления позициями для повышения производительности советника и его адаптивности к рыночным условиям.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

В данной статье мы начинаем знакомство с фреймворком SSCNN — современным архитектурным решением для анализа временных рядов, сочетающим в себе точность, структурированность и высокую вычислительную эффективность. Мы последовательно рассмотрим его теоретические аспекты, обратим внимание на ключевые отличия от предшественников и начнем практическую реализацию базовых компонентов в среде MQL5.
preview
Создание самооптимизирующихся советников на MQL5 (Часть 2): Стратегия скальпинга на USDJPY

Создание самооптимизирующихся советников на MQL5 (Часть 2): Стратегия скальпинга на USDJPY

Я поставил перед собой задачу построить торговую стратегию вокруг пары USDJPY. Мы будем использовать свечные модели, которые формируются на дневном таймфрейме, поскольку они потенциально имеют большую силу. Наша первоначальная стратегия оказалась прибыльной, что побудило нас продолжить ее совершенствование и добавить дополнительные уровни безопасности для защиты полученного капитала.
preview
Передача тиковых данных из MetaTrader в Python через сокеты с помощью MQL5-сервисов

Передача тиковых данных из MetaTrader в Python через сокеты с помощью MQL5-сервисов

Иногда не все можно запрограммировать на языке MQL5. И даже если возможно конвертировать существующие современные библиотеки в MQL5, на это уйдет много времени. В данной статье мы попытаемся обойти зависимость от Windows с помощью MQL5-сервисов — будем передавать тиковые данные (bid, ask и time) в приложение Python с помощью сокетов.
preview
Алгоритм искусственного атома —  Artificial Atom Algorithm (A3)

Алгоритм искусственного атома — Artificial Atom Algorithm (A3)

Реализация алгоритма A3 на MQL5 — метаэвристического метода оптимизации, вдохновленного химическими процессами. Всего 2 настраиваемых параметра, компактность и небольшая популяция обеспечивают высокую скорость работы при достаточном качестве решений.
preview
Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Определить направление рынка может быть просто, но вот понять, когда входить на рынок, - гораздо более сложная задача. В этой статье серии "Разработка инструментария для анализа движения цен" я представлю еще один инструмент, который определяет точки входа и уровни стоп-лосса/тейк-профита. Для достижения этой цели использовался язык программирования MQL5.
preview
Теория графов: Алгоритм Дейкстры в трейдинге

Теория графов: Алгоритм Дейкстры в трейдинге

Алгоритм Дейкстры — классическое решение по поиску кратчайшего пути в теории графов, которое позволяет оптимизировать торговые стратегии путем моделирования рыночных сетей. Трейдеры могут использовать его для поиска наиболее эффективных маршрутов в данных свечного графика.
preview
Управление рисками (Часть 1): Основы построения класса по управлению рисками

Управление рисками (Часть 1): Основы построения класса по управлению рисками

В этой статье мы рассмотрим основы управления рисками в трейдинге и узнаем, как создать свои первые функции для расчета подходящего лота для сделки, а также стоп-лосса. Кроме того, мы подробно рассмотрим, как работают эти функции, объясняя каждый шаг. Наша цель — дать четкое понимание того, как применять эти концепции в автоматической торговле. В конце мы применим все на практике, создав простой скрипт с разработанным нами включаемым файлом.
preview
Разработка системы репликации (Часть 78): Новый Chart Trade (V)

Разработка системы репликации (Часть 78): Новый Chart Trade (V)

В данной статье мы рассмотрим, как нужно реализовывать часть кода получателя. Здесь мы реализуем версию советника, чтобы протестировать и узнать, как работает взаимодействие по протоколу. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте его как окончательное приложение, целью которого не является изучение представленных концепций.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

В статье подробно раскрывается SCNN-архитектура и один из вариантов её реализация средствами MQL5. Мы покажем, как декомпозиция временных рядов сочетается с нейросетевыми методами и вниманием.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Предлагаем познакомиться с продолжением реализации фреймворка SCNN, который сочетает в себе гибкость и интерпретируемость, позволяя точно выделять структурные компоненты временного ряда. В статье подробно раскрываются механизмы адаптивной нормализации и внимания, что обеспечивает устойчивость модели к изменяющимся рыночным условиям.
preview
Торгуем опционы без опционов (Часть 2): Использование в реальной торговле

Торгуем опционы без опционов (Часть 2): Использование в реальной торговле

В статье рассматриваются простые опционные стратегии и их реализация на MQL5. Пишем базовый эксперт, который будет модернизироваться и усложняться.
preview
Передовые алгоритмы исполнения ордеров на MQL5: TWAP, VWAP и ордера Iceberg

Передовые алгоритмы исполнения ордеров на MQL5: TWAP, VWAP и ордера Iceberg

Фреймворк MQL5, предоставляющий розничным трейдерам алгоритмы исполнения институционального уровня (TWAP, VWAP, Iceberg) с помощью унифицированного менеджера исполнения и анализатора эффективности для более плавного и точного разделения ордеров и аналитики.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.
preview
Торговый инструментарий MQL5 (Часть 4): Разработка EX5-библиотеки для управления историей

Торговый инструментарий MQL5 (Часть 4): Разработка EX5-библиотеки для управления историей

Узнайте, как извлекать, обрабатывать, классифицировать, сортировать, анализировать и управлять закрытыми позициями, ордерами и историями сделок с помощью MQL5, создав обширную EX5-библиотеку управления историей с помощью подробного пошагового подхода.
preview
Трейдинг с экономическим календарем MQL5 (Часть 5): Добавление в панель адаптивных элементов управления и кнопок сортировки

Трейдинг с экономическим календарем MQL5 (Часть 5): Добавление в панель адаптивных элементов управления и кнопок сортировки

В этой статье мы создадим кнопки для фильтров валютных пар, уровней важности, временных фильтров и функцию отмены для улучшения управления панелью. Кнопки будут запрограммированы на динамическую реакцию на действия пользователя, обеспечивая бесперебойное взаимодействие. Мы также автоматизируем их поведение, чтобы отражать изменения в реальном времени на панели. Это повысит общую функциональность, мобильность и оперативность панели.
preview
Создание динамических графических интерфейсов на MQL5 через бикубическую интерполяцию

Создание динамических графических интерфейсов на MQL5 через бикубическую интерполяцию

В настоящей статье мы исследуем динамические графические интерфейсы MQL5, использующие бикубическую интерполяцию для высококачественного масштабирования изображений на торговых графиках. Мы подробно описываем гибкие варианты позиционирования, позволяющие выполнять динамическое центрирование или угловую привязку с настраиваемыми смещениями.
preview
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)

Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)

Представляем вашему вниманию заключительную часть цикла, посвящённого GinAR — нейросетевому фреймворку для прогнозирования временных рядов. В этой статье мы анализируем результаты тестирования модели на новых данных и оцениваем её устойчивость в условиях реального рынка.
preview
Трейдинг с экономическим календарем MQL5 (Часть 4): Обновление новостей в панели управления в реальном времени

Трейдинг с экономическим календарем MQL5 (Часть 4): Обновление новостей в панели управления в реальном времени

В этой статье мы расширим возможности нашей панели экономического календаря, внедрив обновления новостей в реальном времени для поддержания актуальности рыночной информации. Мы интегрируем методы извлечения данных в реальном времени в MQL5 для непрерывного обновления событий на панели управления и повышения отзывчивости интерфейса. Это обновление обеспечивает нам доступ к последним экономическим новостям непосредственно с панели управления, оптимизируя торговые решения на основе самых свежих данных.