Статьи об интеграции MetaTrader 5 с помощью языка MQL5

icon

Задачи, которые встают перед трейдером, интересны и, зачастую, требуют нестандартных подходов. Здесь вы найдете статьи, в которых предлагаются самые неожиданные решения для оценки, анализа и обработки ценовых данных и результатов торговли. Подключение баз данных и ICQ, использование OpenCL и  социальных сетей, использование Delphi и C# - всё это затрагивают авторы предлагаемых статей.

Читайте, и вы узнаете, как использовать специализированные математические и нейронные пакеты, а также многое другое. Станьте автором и поделитесь уникальными знаниями с MQL5.community.

Новая статья
последние | лучшие
preview
Популяционный ADAM (Adaptive Moment Estimation)

Популяционный ADAM (Adaptive Moment Estimation)

В статье представлено превращение известного и популярного градиентного метода оптимизации ADAM в популяционный алгоритм и его модификация с введением гибридных особей. Новый подход позволяет создавать агентов, комбинирующих элементы успешных решений с использованием вероятностного распределения. Ключевое нововведение — формирование гибридных популяционных особей, которые адаптивно аккумулируют информацию от наиболее перспективных решений, повышая эффективность поиска в сложных многомерных пространствах.
preview
Создаем 3D-бары на основе времени, цены и объема

Создаем 3D-бары на основе времени, цены и объема

Что такое многомерные 3D-графики цен и как они создаются. Как 3D-бары предсказывают развороты цены, и как Python и MetaTrader 5 позволяют строить эти объемные бары в режиме реального времени.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)

Мы разобьем основной код MQL5 на отдельные фрагменты, чтобы проиллюстрировать интеграцию Telegram и WhatsApp для получения уведомлений о сигналах от индикатора Trend Constraint, который мы создаем в этой серии статей. Статья будет полезна трейдерам, а также начинающим и опытным разработчикам. Сначала мы рассмотрим настройку уведомлений в MetaTrader 5 и пользу их подключения для пользователя. На основе этого разработчики смогут отметить для себя определенные моменты для дальнейшего применения в своих системах.
preview
Нелинейные регрессионные модели на бирже

Нелинейные регрессионные модели на бирже

Нелинейные регрессионные модели на бирже: реально ли прогнозировать финансовые рынки? Попробуем создать моделеь для прогноза цен на евро-доллар, и сделать на ее основе двух роботов - на Python и MQL5.
preview
Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)

Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)

В данной статье мы представляем алгоритм арифметической оптимизации (Arithmetic Optimization Algorithm, AOA), который основывается на простых арифметических операциях: сложении, вычитании, умножении и делении. Эти базовые математические действия служат основой для поиска оптимальных решений в различных задачах.
preview
Применение ассоциативных правил для анализа данных на Форексе

Применение ассоциативных правил для анализа данных на Форексе

Как применить предиктивные правила ретейл-аналитики супермаркетов к реальному рынку Форекс? Как связаны покупки печенья, молока и хлеба с транзакциями на бирже? В статье рассматривается инновационный подход к алгоритмическому трейдингу, основанный на применении ассоциативных правил.
preview
Разрабатываем мультивалютный советник (Часть 20): Приводим в порядок конвейер этапов автоматической оптимизации проектов (I)

Разрабатываем мультивалютный советник (Часть 20): Приводим в порядок конвейер этапов автоматической оптимизации проектов (I)

Мы создали уже довольно много компонентов, которые помогают организовать процесс автоматической оптимизации. При создании мы придерживались традиционной цикличности: от создания минимального рабочего кода до рефакторинга и получения улучшенного кода. Пришло время заняться наведением порядка в нашей базе данных, которая тоже является ключевым компонентом в создаваемой системе.
preview
Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS): Модификация

Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS): Модификация

Во второй части статьи мы продолжим разработку модифицированной версии алгоритма AOS (Atomic Orbital Search), сфокусировавшись на специфических операторах для повышения его эффективности и адаптивности. После анализа основ и механик алгоритма, мы обсудим идеи по улучшению производительности и возможности анализа сложных пространств решений, предлагая новые подходы для расширения его функциональности как инструмента для оптимизации.
preview
Интеграция скрытых марковских моделей в MetaTrader 5

Интеграция скрытых марковских моделей в MetaTrader 5

В этой статье мы продемонстрируем, как скрытые марковские модели, обученные с использованием Python, могут быть интегрированы в приложения MetaTrader 5. Скрытые марковские модели — это мощный статистический инструмент, используемый для моделирования временных рядов данных, где моделируемая система характеризуется ненаблюдаемыми (скрытыми) состояниями. Фундаментальная предпосылка HMM заключается в том, что вероятность нахождения в заданном состоянии в определенный момент времени зависит от состояния процесса в предыдущем временном интервале.
preview
Анализ влияния погоды на валюты аграрных стран с использованием Python

Анализ влияния погоды на валюты аграрных стран с использованием Python

Как связана погода и валютный рынок? В классической экономической теории долгое время не признавали влияние таких факторов на поведение рынка. Но все изменилось. Давайте попробуем найти связи в состоянии погоды и положения аграрных валют на рынке.
preview
Методы оптимизации библиотеки Alglib (Часть II)

Методы оптимизации библиотеки Alglib (Часть II)

В статье продолжим изучение оставшихся методов оптимизации из библиотеки ALGLIB, уделяя особое внимание их тестированию на сложных многомерных функциях. Это позволит нам не только оценить эффективность каждого из алгоритмов, но и выявить их сильные и слабые стороны в различных условиях.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 22): Условные генеративно-состязательные сети (cGAN)

Возможности Мастера MQL5, которые вам нужно знать (Часть 22): Условные генеративно-состязательные сети (cGAN)

Генеративно-состязательные сети — это пара нейронных сетей, которые обучаются друг на друге для получения более точных результатов. Мы рассмотрим условный тип этих сетей в контексте их возможного применения в прогнозировании финансовых временных рядов в рамках класса сигналов советника.
preview
Разрабатываем мультивалютный советник (Часть 19): Создаём этапы, реализованные на Python

Разрабатываем мультивалютный советник (Часть 19): Создаём этапы, реализованные на Python

Пока что мы рассматривали автоматизацию запуска последовательных процедур оптимизации советников исключительно в штатном тестере стратегий. Но что делать, если между такими запусками нам хотелось бы выполнить некоторую обработку уже полученных данных, используя другие средства? Попробуем добавить возможность создания новых этапов оптимизации, выполняемых программами, написанными на Python.
preview
Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Данные экономического календаря по умолчанию недоступны для тестирования с помощью советников в тестере стратегий. Мы рассмотрим, как базы данных могут помочь обойти это ограничение. В частности, мы увидим, как можно использовать базы данных SQLite для архивирования новостей Экономического календаря, чтобы советники, собранные с помощью Мастера, могли использовать их для генерации торговых сигналов.
preview
Построение экономических прогнозов: потенциальные возможности Python

Построение экономических прогнозов: потенциальные возможности Python

Как использовать экономические данные Всемирного банка для прогнозирования? Что будет если совместить модели ИИ и экономику?
preview
Количественный подход в управлении рисками: Применение VaR модели для оптимизации мультивалютного портфеля с Python и MetaTrader 5

Количественный подход в управлении рисками: Применение VaR модели для оптимизации мультивалютного портфеля с Python и MetaTrader 5

Эта статья раскрывает потенциал Value at Risk (VaR) модели для оптимизации мультивалютного портфеля. Используя мощь Python и функционал MetaTrader 5, мы демонстрируем, как реализовать VaR-анализ для эффективного распределения капитала и управления позициями. От теоретических основ до практической реализации, статья охватывает все аспекты применения одной из наиболее устойчивых систем расчета рисков — VaR — в алгоритмической торговле.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля

Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля

По умолчанию торговля несколькими валютами недоступна при сборке советника с помощью Мастера. Мы рассмотрим два возможных приема, к которым могут прибегнуть трейдеры, желающие проверить свои идеи на нескольких символах одновременно.
preview
Поиск с запретами — Tabu Search (TS)

Поиск с запретами — Tabu Search (TS)

В статье рассматривается алгоритм табу-поиска — один из первых и наиболее известных методов метаэвристики. Мы подробно разберем, как работает алгоритм, начиная с выбора начального решения и исследования соседних вариантов, с акцентом на использование табу-листа. Статья охватывает ключевые аспекты алгоритма и его особенности.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (финал)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (финал)

Статья является последней частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. Хотя библиотека еще не готова к использованию, в этой части мы будем использовать наш клиент для обновления пользовательского символа с помощью тиков (или цен), полученных от другого брокера. В конце статьи вы найдете дополнительную информацию о текущем состоянии библиотеки и узнаете о том, чего не хватает для ее полного соответствия протоколу MQTT 5.0, о возможном плане действий и о том, как следить за развитием библиотеки и вносить в нее свой вклад.
preview
Алгоритм искусственных водорослей — Artificial Algae Algorithm (AAA)

Алгоритм искусственных водорослей — Artificial Algae Algorithm (AAA)

В данной статье рассматривается алгоритм искусственных водорослей (AAA), разработанный на основе биологических процессов, характерных для микроводорослей. Алгоритм включает спиральное движение, эволюционный процесс и адаптацию, что позволяет ему решать задачи оптимизации. Статья предлагает глубокий анализ принципов работы AAA и его потенциала в математическом моделировании, подчеркивая связь между природой и алгоритмическими решениями.
preview
Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5

Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5

В этой статье мы описываем реализацию Многослойного итерационного алгоритма как метода группового учета аргументов на языке MQL5.
preview
Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

В очередной статье мы познакомимся с алгоритмом Anarchic Society Optimization (ASO) и обсудим, как алгоритм, основанный на иррациональном и авантюрном поведении участников анархического общества - аномальной системы социального взаимодействия, свободной от централизованной власти и различного рода иерархий способен исследовать пространство решений и избегать ловушек локального оптимума. В статье будет представлена унифицированная структура ASO, применимая как к непрерывным, так и к дискретным задачам.
preview
Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы

Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы

В статье мы познакомимся с алгоритмом искусственного пчелиного улья (ABHA), разработанным в 2009 году. Алгоритм направлен на решение задач непрерывной оптимизации. Мы рассмотрим, как ABHA черпает вдохновение из поведения пчелиной колонии, где каждая пчела выполняет уникальную роль, что способствует более эффективному поиску ресурсов.
preview
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 6)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 6)

Статья является шестой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. В этой части я опишу основные изменения в нашем первом рефакторинге, получение рабочего проекта наших классов построения пакетов, создание пакетов PUBLISH и PUBACK, а также семантику кодов причин PUBACK.
preview
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Метод Швефеля, Бокса-Мюллера

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Метод Швефеля, Бокса-Мюллера

Эта статья представляет увлекательное погружение в мир социального поведения живых организмов и его влияние на создание новой математической модели — ASBO (Adaptive Social Behavior Optimization). Мы рассмотрим, как принципы лидерства, соседства и сотрудничества, наблюдаемые в обществах живых существ, вдохновляют разработку инновационных алгоритмов оптимизации.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.
preview
Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу создания торгового алгоритма на Python.
preview
Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)

Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)

Статья раскрывает потенциал алгоритма ANS, как важного шага в развитии гибких и интеллектуальных методов оптимизации, способных учитывать специфику задачи и динамику окружающей среды в пространстве поиска.
preview
Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 4): Организация функций в классах в MQL5

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 4): Организация функций в классах в MQL5

В данной статье рассматривается переход от процедурного написания кода к объектно-ориентированному программированию (ООП) в MQL5 с упором на интеграцию с REST API. Сегодня мы обсуждаем организацию функций HTTP-запросов (GET и POST) в классы и подчеркнем такие преимущества, как инкапсуляция, модульность и простота обслуживания. Подробно рассмотрим рефакторинг кода и покажем замену изолированных функций методами класса. Статья содержит практические примеры и тесты.
preview
Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы

Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы

Первый этап автоматизированного процесса оптимизации у нас уже реализован. Для разных символов и таймфреймов мы проводим оптимизацию по нескольким критериям и сохраняем информацию о результатах каждого прохода в базе данных. Теперь займёмся отбором лучших групп наборов параметров из найденных на первом этапе.
preview
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.
preview
Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний

Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний

В разрабатываемом советнике у нас уже заложен определённый механизм контроля просадки. Но он имеет вероятностную природу, так как основывается на результатах тестирования на исторических ценовых данных. Поэтому просадка, хотя и с небольшой вероятностью, может иногда превышать максимальные ожидаемые значения. Попробуем добавить механизм, обеспечивающий гарантированное соблюдение заданного уровня просадки.
preview
Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Для получения хорошего советника нам надо подобрать для него множество хороших наборов параметров экземпляров торговых стратегий. Это можно делать вручную, запуская оптимизацию на разных символах, и затем отбирая лучшие результаты. Но лучше поручить эту работу программе и заняться более продуктивной деятельностью.
preview
Алгоритм кометного следа (Comet Tail Algorithm, CTA)

Алгоритм кометного следа (Comet Tail Algorithm, CTA)

В данной статье мы рассмотрим новый авторский алгоритм оптимизации CTA (Comet Tail Algorithm), который черпает вдохновение из уникальных космических объектов - комет и их впечатляющих хвостов, формирующихся при приближении к Солнцу. Данный алгоритм основан на концепции движения комет и их хвостов, и предназначен для поиска оптимальных решений в задачах оптимизации.
preview
Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки

Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки

План разработки советника предусматривает несколько этапов с сохранением промежуточных результатов в базе данных. Заново достать их оттуда можно только в виде строк или чисел, а не объектов. Поэтому нам нужен способ воссоздания в советнике нужных объектов из строк, прочитанных из базы данных.
preview
Алгоритмическая торговля с MetaTrader 5 и R для начинающих

Алгоритмическая торговля с MetaTrader 5 и R для начинающих

В статье мы объединим финансовый анализ с алгоритмической торговлей, а также посмотрим, как можно подружить R и MetaTrader 5. Эта статья — руководство по объединению аналитической гибкости R с огромными торговыми возможностями MetaTrader 5.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)

Статья является пятой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. В этой части мы опишем структуру пакетов PUBLISH - как мы устанавливаем их флаги публикации (Publish Flags), кодируем строки названий тем и устанавливаем идентификаторы пакетов, когда это необходимо.
preview
Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 3): Создание автоматических ходов и тестовых скриптов на MQL5

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 3): Создание автоматических ходов и тестовых скриптов на MQL5

В этой статье рассматривается реализация автоматических ходов в игре "Крестики-нолики" на языке Python, интегрированная с функциями MQL5 и модульными тестами. Цель - улучшить интерактивность игры и обеспечить надежность системы с помощью тестирования на MQL5. Изложение охватывает разработку игровой логики, интеграцию и практическое тестирование, а завершается созданием динамической игровой среды и надежной интегрированной системы.