Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (EEMFlow)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (EEMFlow)

Статья знакомит с архитектурой фреймворка EEMFlow, ориентированного на работу с событийными потоками данных. Особое внимание уделяется адаптивным и многоуровневым модулям, которые обеспечивают гибкую обработку как глобальных, так и локальных изменений. Архитектура фреймворка позволяет сохранять ключевую информацию, минимизировать влияние шума и эффективно формировать признаки для дальнейшего анализа, делая EEMFlow перспективным инструментом для прогнозирования динамики финансовых рынков.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 47): Обучение с подкреплением (алгоритм временных различий)

Возможности Мастера MQL5, которые вам нужно знать (Часть 47): Обучение с подкреплением (алгоритм временных различий)

Temporal Difference (TD, временные различия) — еще один алгоритм обучения с подкреплением, который обновляет Q-значения на основе разницы между прогнозируемыми и фактическими вознаграждениями во время обучения агента. Особое внимание уделяется обновлению Q-значений без учета их пар "состояние-действие" (state-action). Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Фреймворк Extralonger демонстрирует подход к интеграции пространственных и временных факторов в единую модель, что позволяет одновременно учитывать локальные закономерности и долгосрочные циклы. Такая архитектура делает прогнозирование временных рядов более устойчивым к рыночному шуму и открывает возможность анализа данных на разных горизонтах. В статье подробно рассматривается, как эти идеи воплощаются на практике средствами OpenCL и MQL5.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики

Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики

Проксимальная оптимизация политики (Proximal Policy Optimization) — еще один алгоритм обучения с подкреплением, который обновляет политику, часто в сетевой форме, очень маленькими шагами, чтобы обеспечить стабильность модели. Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
preview
Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Теория

Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Теория

Секреты эффективной оптимизации торговых стратегий в метаэвристических подходах. Community of Scientist Optimization — новый популяционный алгоритм, вдохновленный механизмами функционирования научного сообщества. В отличие от традиционных природных метафор, CoSO моделирует уникальные аспекты человеческой научной деятельности: публикацию результатов в журналах, конкуренцию за гранты и формирование исследовательских групп.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Окончание)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Окончание)

В данной статье показана практическая реализация фреймворка SEW ResNet средствами MQL5 с акцентом на прикладное применение в торговле. Двойной Bottleneck даёт возможность одновременно анализировать унитарные потоки и межканальные зависимости, не теряя градиентов при обучении. Спайковые активации с адаптивными порогами и гейты повышают устойчивость к шуму и чувствительность к новизне рынка. В тексте приведены детали реализации и результаты тестов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Мы завершаем рассмотрение чувствительности темпа обучения к производительности советников изучением адаптируемых темпов обучения. Темпы должны быть настроены для каждого параметра в слое в процессе обучения, поэтому нам необходимо оценить потенциальные преимущества по сравнению с ожидаемыми потерями производительности.
preview
Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Практика

Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Практика

Продолжение темы оптимизации научным сообществом. CoSO следует рассматривать не как готовое решение, а как перспективную исследовательскую платформу. При должной доработке, CoSO может найти свою нишу в задачах, где важна адаптивность и устойчивость к изменениям, а время вычислений не критично.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Фреймворк Extralonger демонстрирует уникальную способность интегрировать пространственные и временные факторы в единую модель, обеспечивая высокую точность прогнозов. Его архитектура позволяет адаптироваться к разным горизонтам планирования и финансовым инструментам, сохраняя прозрачность и управляемость системы.
preview
Алгоритм дендритных клеток — Dendritic Cell Algorithm (DCA)

Алгоритм дендритных клеток — Dendritic Cell Algorithm (DCA)

Алгоритм дендритных клеток (DCA) — метаэвристика, вдохновлённая механизмами врождённого иммунитета. Дендритные клетки патрулируют пространство поиска, накапливают сигналы о качестве позиций и выносят коллективный вердикт: эксплуатировать найденное или продолжать исследование. Разберём, как биологическая модель обнаружения патогенов превращается в алгоритм оптимизации.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

В этой статье продолжаем практическое знакомство с SSCNN — архитектурным решением нового поколения, способным работать с фрагментированными временными рядами. Вместо слепого масштабирования — разумная модульность, внимание к деталям и точечная нормализация. Мы шаг за шагом создаём вычислительные блоки в среде MQL5 и закладываем основу для надёжного прогнозного анализа.
preview
Машинное обучение и Data Science (Часть 34): Разложение временных рядов, раскрываем саму суть фондового рынка

Машинное обучение и Data Science (Часть 34): Разложение временных рядов, раскрываем саму суть фондового рынка

В мире, переполненном шумными и непредсказуемыми данными, выявление значимых закономерностей может быть непростой задачей. В этой статье мы рассмотрим сезонное разложение (seasonal decomposition) — мощный аналитический метод, который помогает разделить данные на ключевые компоненты: тренд, сезонные закономерности и шум. Разбив данные на такие составляющие, мы можем выявить скрытые закономерности и работать с более чистой и понятной информацией.
preview
Оптимизатор Бонобо — Bonobo Optimizer (BO)

Оптимизатор Бонобо — Bonobo Optimizer (BO)

В статье представлена реализация и анализ алгоритма Bonobo Optimizer, основанного на уникальных особенностях поведения приматов бонобо — динамической социальной структуре fission-fusion и трех стратегиях спаривания. Каковы интересные возможности этого метода?
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Продолжаем работу по реализации подходов, предложенных авторами фреймворка Extralonger. На этот раз сосредоточимся на построении модуля Global-Local Spatial Attention средствами MQL5, рассматривая как его структуру, так и практическую интеграцию в общий вычислительный процесс.
preview
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (E-STMFlow)

Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (E-STMFlow)

Предлагаем познакомиться с фреймворком E-STMFlow, который эффективно обрабатывает потоки событий, извлекая информативные эмбеддинги, фильтруя шум и выявляя ключевые движения. Его архитектура позволяет выявлять сложные взаимосвязи между признаками и обеспечивает масштабируемость, точность и высокую вычислительную эффективность для интеллектуального анализа и прогнозирования.
preview
Машинное обучение и Data Science (Часть 33): Pandas Dataframe в MQL5, упрощаем сбор данных для машинного обучения

Машинное обучение и Data Science (Часть 33): Pandas Dataframe в MQL5, упрощаем сбор данных для машинного обучения

При работе с моделями машинного обучения крайне важно обеспечить согласованность данных, используемых для обучения, проверки и тестирования. В этой статье мы создадим собственную версию библиотеки Pandas на языке MQL5, чтобы обеспечить единый подход к обработке данных машинного обучения и гарантировать, что одни и те же данные применяются внутри и вне MQL5, где и происходит большая часть обучения.
preview
Алгоритм эхолокации дельфинов — Dolphin Echolocation Algorithm (DEA)

Алгоритм эхолокации дельфинов — Dolphin Echolocation Algorithm (DEA)

В этой статье мы подробно рассмотрим алгоритм DEA — метаэвристический метод оптимизации, вдохновленный уникальной способностью дельфинов находить добычу с помощью эхолокации. От математических основ до практической реализации на MQL5, от анализа до сравнения с классическими алгоритмами — детально разберем, почему этот относительно молодой метод заслуживает места в арсенале тех, кто сталкивается с задачами оптимизации.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (SpikingBrain)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (SpikingBrain)

Фреймворк SpikingBrain демонстрирует уникальный подход к обработке данных: нейроны реагируют только на значимые события, эффективно фильтруя шум. Его событийная архитектура снижает вычислительные затраты, сохраняя ключевую информацию о движениях. Адаптивные пороги и возможность использования предварительно обученных модулей обеспечивают гибкость и масштабируемость модели.
preview
Оптимизация хаотичной игрой — Chaos Game Optimization (CGO)

Оптимизация хаотичной игрой — Chaos Game Optimization (CGO)

Представляем новый метаэвристический алгоритм Chaos Game Optimization (CGO), демонстрирующий уникальную способность сохранять высокую эффективность при работе с задачами большой размерности. В отличие от большинства оптимизационных алгоритмов, CGO не только не теряет, но иногда даже увеличивает производительность при масштабировании задачи, что является его ключевой особенностью.
preview
Алгоритм поиска по кругу — Circle Search Algorithm (CSA)

Алгоритм поиска по кругу — Circle Search Algorithm (CSA)

В статье представлен новый метаэвристический алгоритм оптимизации CSA (Circle Search Algorithm), основанный на геометрических свойствах окружности. Алгоритм использует принцип движения точек по касательным для поиска оптимального решения, сочетая фазы глобального исследования и локальной эксплуатации.
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (STFlow)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (STFlow)

Статья знакомит с фреймворком STFlow, который способен формировать устойчивое совместное представление текущего состояния рынка и динамики последних событий, обеспечивая высокую чувствительность к микроимпульсам при сохранении стабильности обработки. Реализован базовый модуль ICE, который аккумулирует потоки цены и событий, создавая надёжный фундамент для дальнейшей агрегации и анализа.
preview
Алгоритм конкурентного обучения — Competitive Learning Algorithm (CLA)

Алгоритм конкурентного обучения — Competitive Learning Algorithm (CLA)

В статье представлен алгоритм конкурентного обучения (Competitive Learning Algorithm, CLA) — новый метаэвристический метод оптимизации, основанный на моделировании образовательного процесса. Алгоритм организует популяцию решений в виде классов со студентами и учителями, где агенты обучаются через три механизма: следование за лучшим в классе, использование личного опыта и обмен знаниями между классами.
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (CDC-модуль)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (CDC-модуль)

В статье представлен промежуточный этап реализации фреймворка EEMFlow средствами MQL5. Основное внимание уделено построению и интеграции CDC-модуля, включающего Self-Corrector, механизм Self-Attention для скорректированного потока и взвешенное объединение сигналов через маску доверия. Рассмотрены принципы архитектуры, порядок прямого и обратного проходов, а также особенности работы с локальными и глобальными признаками движения.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь

Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь

Функция потерь (Loss Function) — это ключевая метрика алгоритмов машинного обучения, которая обеспечивает обратную связь для процесса обучения, количественно определяя, насколько хорошо данный набор параметров работает по сравнению с предполагаемым целевым значением. Мы рассмотрим различные форматы этой функции в пользовательском классе Мастера MQL5.
preview
Алгоритм голубых обезьян — Blue Monkey (BM) Algorithm

Алгоритм голубых обезьян — Blue Monkey (BM) Algorithm

В статье представлена реализация метаэвристического алгоритма Blue Monkey, основанного на моделировании социального поведения голубых мартышек. Рассматриваются ключевые механизмы алгоритма - групповая структура популяции, следование за локальными лидерами и обновление поколений через замену худших взрослых особей лучшими детёнышами, а также анализируются результаты тестирования.
preview
Моделирование рынка (Часть 06): Перенос данных из MetaTrader 5 в Excel

Моделирование рынка (Часть 06): Перенос данных из MetaTrader 5 в Excel

Многим, особенно тем, кто не занимается программированием, очень сложно передавать информацию между MetaTrader 5 и другими программами. Одной из таких программ является Excel. Многие люди используют Excel для управления и контроля своих рисков, так как это очень хорошая программа, которую легко освоить даже тем, кто не является программистом на VBA. Далее мы рассмотрим, как установить связь между MetaTrader 5 и Excel (очень простой метод).
preview
Алгоритм обратного поиска — Backtracking Search Algorithm (BSA)

Алгоритм обратного поиска — Backtracking Search Algorithm (BSA)

Что если алгоритм оптимизации мог бы помнить свои прошлые путешествия и использовать эту память для поиска лучших решений? BSA делает именно это — балансируя между исследованием нового и возвращением к проверенному. В статье раскрываем секреты алгоритма. Простая идея, минимум параметров и стабильный результат.
preview
Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.
preview
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Окончание)

Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Окончание)

S3CE-Net в нашей интерпретации ловко переводит рынок в язык событий и фиксирует ранние импульсы, которые традиционные индикаторы просто усредняют. STFS гарантирует устойчивость обучения — модель видит данные под разными углами и не переобучается на локальных аномалиях. SSAM-блоки и OpenCL-реализация дают практическую скорость и точность, а разделение режимов обучение/эксплуатация сохраняет ресурсы в продакшене.
preview
Применение ансамблевых методов для задач классификации на языке MQL5

Применение ансамблевых методов для задач классификации на языке MQL5

В данной статье мы представляем реализацию нескольких ансамблевых классификаторов на языке MQL5 и рассматриваем их эффективность в различных ситуациях.
preview
Алгоритм Поиска Ворона — Crow Search Algorithm (CSA)

Алгоритм Поиска Ворона — Crow Search Algorithm (CSA)

Алгоритм Поиска Ворона (CSA) — это элегантная метаэвристика, вдохновленная умением ворон прятать пищу и находить чужие тайники, которая решает задачи оптимизации через баланс между следованием за успешными решениями и случайным исследованием пространства поиска. Выясним, насколько алгоритм производителен.
preview
Методы повторной выборки для оценки прогнозирования и классификации в MQL5

Методы повторной выборки для оценки прогнозирования и классификации в MQL5

В этой статье рассмотрим и реализуем методы оценки качества модели, которые используют один и тот же набор данных как для обучения, так и для проверки.
preview
Загрузка данных Международного валютного фонда на Python

Загрузка данных Международного валютного фонда на Python

Загрузка данных Международного валютного фонда на Python: добываем данные IMF для применения в макроэкономических валютных стратегиях. Как макроэкономика может помочь трейдеру и алготрейдеру?
preview
Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)

Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)

В данной статье рассмотрим новый популяционный алгоритм оптимизации CPA (Cyclic Parthenogenesis Algorithm), вдохновленный уникальной репродуктивной стратегией тлей. Алгоритм сочетает два механизма размножения — партеногенез и половое, а также использует колониальную структуру популяции с возможностью миграции между колониями. Ключевыми особенностями алгоритма являются адаптивное переключение между различными стратегиями размножения и система обмена информацией между колониями через механизм перелета.
preview
Оптимизация нейробоидами — Neuroboids Optimization Algorithm (NOA)

Оптимизация нейробоидами — Neuroboids Optimization Algorithm (NOA)

Новая авторская биоинспирированная метаэвристика оптимизации — NOA (Neuroboids Optimization Algorithm), объединяющая принципы коллективного интеллекта и нейронных сетей. В отличие от классических методов, алгоритм использует популяцию самообучающихся "нейробоидов", каждый с собственной нейросетью, адаптирующей стратегию поиска в реальном времени. Статья раскрывает архитектуру алгоритма, механизмы самообучения агентов и перспективы применения этого гибридного подхода в сложных задачах оптимизации.
preview
Нейросети в трейдинге: Модели многократного уточнения прогнозов (Окончание)

Нейросети в трейдинге: Модели многократного уточнения прогнозов (Окончание)

Представляем фреймворк RAFT — мощный инструмент для анализа и прогнозирования финансовых временных рядов. Его гибкая и оптимизированная архитектура обеспечивает точность прогнозов, стабильность работы и ускоряет обработку данных. RAFT снижает риски ошибок и облегчает создание эффективных торговых стратегий.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (модуль внимания)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (модуль внимания)

В этой статье мы подробно рассмотрим практическую реализацию ключевых компонентов фреймворка SAGDFN. Покажем, как организованы разреженное внимание и выбор значимых соседей для прогнозирования временных рядов. Представленные подходы демонстрируют баланс между точностью прогнозов и эффективностью вычислений.
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Основные модули)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Основные модули)

В этой статье продолжается практическая реализация фреймворка STFlow. Показано, как идеи пространственно-временной агрегации и кросс-модальной обработки превращаются в рабочие спайковые модули для анализа рынка.
preview
Разложение по динамическим модам в применении к одномерным временным рядам в языке MQL5

Разложение по динамическим модам в применении к одномерным временным рядам в языке MQL5

Разложение по динамическим модам (Dynamic mode decomposition, DMD) — метод, который обычно применяют к наборам многомерных данных. В этой статье мы демонстрируем применение DMD на одномерных временных рядах, выявляя его способность характеризовать ряды, а также делать прогнозы. При этом рассмотрим встроенную в MQL5 реализацию разложения по динамическим модам, уделяя особое внимание новому матричному методу DynamicModeDecomposition().
preview
Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (Основные компоненты)

Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (Основные компоненты)

В статье рассматривается архитектура фреймворка EVA-Flow, ориентированного на обработку пространственно-временных данных и прогнозирование динамики потоков. Основное внимание уделено SMR-модулю, обеспечивающему устойчивое формирование скрытых состояний, и механизму адаптивной инициализации начального состояния через обучаемые кандидаты.