Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Окончание)

Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Окончание)

Фреймворк SDformerFlow превращает сложные события финансовых рядов в структурированные представления, позволяя модели видеть одновременно локальные колебания и глобальные тенденции. Многоуровневая U-структура обеспечивает согласованность прямого и обратного проходов, синхронизацию градиентов и устойчивость вычислений. В итоге SDformerFlow проявляет себя как мощный и гибкий инструмент для построения современных торговых систем.
preview
Детерминированный алгоритм дендритных клеток — Deterministic Dendritic Cell Algorithm (dDCA)

Детерминированный алгоритм дендритных клеток — Deterministic Dendritic Cell Algorithm (dDCA)

Представлена адаптация детерминированного алгоритма дендритных клеток (dDCA) для задач непрерывной оптимизации. Алгоритм, вдохновлённый Теорией Опасности иммунной системы, использует механизм накопления сигналов для автоматического баланса между исследованием и эксплуатацией пространства поиска.
preview
Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (Энкодер)

Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (Энкодер)

Эта статья погружает читателя в самую суть фреймворка EV-MGRFlowNet, показывая, как его архитектура раскрывается в прикладной реализации под задачи финансового прогнозирования. Мы шаг за шагом строим продуманную связку модулей, способную улавливать тонкие временные закономерности и переводить их в осмысленные рыночные сигналы.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (модуль E-TROF)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (модуль E-TROF)

В статье показан механизм превращения потока тиков или баров в устойчивое контекстное представление рынка, пригодное для онлайн-торговли без лишних вычислений. Инкрементальная обработка, стековое накопление состояния и расширенное пространство признаков позволяют выявлять направленные движения и локальные корреляции там, где классические методы видят лишь шум.
preview
Ансамблевые методы для улучшения численного прогнозирования в MQL5

Ансамблевые методы для улучшения численного прогнозирования в MQL5

В этой статье мы представим реализацию нескольких методов ансамблевого обучения на языке MQL5 и исследуем их эффективность в различных сценариях.
preview
Создание самооптимизирующихся советников на MQL5 (Часть 6): Предотвращение стоп-аутов

Создание самооптимизирующихся советников на MQL5 (Часть 6): Предотвращение стоп-аутов

Рассмотрим алгоритмическую процедуру, которая позволит свести к минимуму общее количество случаев стоп-аутов в прибыльных сделках. Проблема, с которой мы столкнулись, весьма сложна, и большинство решений, предложенных в ходе обсуждений в сообществе, не содержат установленных и неизменных правил. Наш алгоритмический подход к решению проблемы увеличил прибыльность сделок и снизил средний убыток на сделку. Однако необходимо внести дополнительные улучшения, чтобы полностью отсортировать все сделки, которые будут закрыты по стопу-ауту. Наше решение представляет собой неплохой первый шаг, доступный для всех желающих.
preview
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Основные компоненты)

Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Основные компоненты)

В статье мы подробно рассмотрели интеграцию модуля SSAM в блок SEW‑ResNeXt, демонстрируя, как фреймворк S3CE‑Net позволяет эффективно объединять спайковое внимание с остаточными блоками. Такая архитектура обеспечивает точную обработку временных и пространственных потоков данных и высокую стабильность обучения. Модульность и гибкость компонентов упрощают расширение модели и повторное использование проверенных методов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 58): Обучение с подкреплением (DDPG) совместно с паттернами скользящей средней и стохастика

Возможности Мастера MQL5, которые вам нужно знать (Часть 58): Обучение с подкреплением (DDPG) совместно с паттернами скользящей средней и стохастика

Скользящая средняя и стохастический осциллятор — очень распространенные индикаторы, совместные паттерны которых мы исследовали в предыдущей статье с помощью сети обучения с учителем, чтобы понять, какие из них работают. В этой статье мы сделаем следующий шаг, рассмотрев влияние обучения с подкреплением, используемого с обученной нейронной сетью, на производительность. Наши испытания проводились в течение очень ограниченного промежутка времени. Тем не менее, мы продолжим использовать возможности, предоставляемые Мастером MQL5.
preview
Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса

Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса

Алгоритм Метрополиса-Гастингса — фундаментальный метод Монте-Карло по схеме марковских цепей (MCMC), широко применяемый для аппроксимации апостериорных распределений в байесовском выводе. Статья описывает теоретические основы алгоритма, реализацию класса MHSampler на MQL5 и примеры применения с анализом полученных выборок.
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Окончание)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Окончание)

В статье представлен практический опыт внедрения фреймворка STFlow в торговую систему. Показано, как параллельная обработка ICE-признаков и потока событий, сочетание motion-энкодера и адаптивной фьюжн-агрегации позволяют модели самостоятельно анализировать рынок и принимать решения в реальном времени. Результаты тестирования на исторических данных демонстрируют положительное математическое ожидание и способность к адаптации в меняющихся рыночных условиях.
preview
Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 1): Введение в GAN и синтетические данные в сфере финансового моделирования

Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 1): Введение в GAN и синтетические данные в сфере финансового моделирования

Настоящая статья знакомит трейдеров с Генеративно-состязательными сетями (GAN) для генерации Синтетических финансовых данных, устраняя ограничения данных в процессе обучения модели. В ней рассматриваются основы GAN, реализация кода на python и MQL5, а также практическое применение в финансовой сфере, позволяющее трейдерам повысить точность и надежность моделей с помощью синтетических данных.
preview
Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (Окончание)

Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (Окончание)

Реализация фреймворка EV-MGRFlowNet демонстрирует его ключевые преимущества: модульность, устойчивость к рыночным колебаниям и способность к самостоятельной выработке стратегии. Эти особенности делают фреймворк мощным инструментом для анализа, прогнозирования и развития автономных торговых стратегий.
preview
Механизмы гейтинга в ансамблевом обучении

Механизмы гейтинга в ансамблевом обучении

В настоящей статье мы продолжаем наше исследование ансамблевых моделей, обсуждая концепцию ворот (gates), в частности, как они могут быть полезны при объединении выходных данных модели для повышения точности прогнозирования или обобщения модели.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 54): Обучение с подкреплением с гибридным SAC и тензорами

Возможности Мастера MQL5, которые вам нужно знать (Часть 54): Обучение с подкреплением с гибридным SAC и тензорами

Soft Actor Critic (мягкий актер-критик) — это алгоритм обучения с подкреплением, который мы рассматривали в предыдущей статье, где мы также представили Python и ONNX как эффективные подходы к обучению сетей. В этой статье мы вернемся к алгоритму с целью использования тензоров — вычислительных графов, которые часто используются в Python.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 4): Обработка больших данных

Интеграция MQL5 с пакетами обработки данных (Часть 4): Обработка больших данных

В статье рассматриваются передовые методы интеграции MQL5 с мощными инструментами обработки данных, а также уделяется внимание эффективной обработке больших данных для улучшения торгового анализа и принятия решений.
preview
Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (EVA-Flow)

Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (EVA-Flow)

В статье знакомимся с фреймворком EVA-Flow для низколатентной и высокочастотной оценки оптического потока на основе событийных данных. Модель сочетает адаптивное представление потока через Unified Voxel Grid с пространственно-временной рекуррентной архитектурой SMR, обеспечивая стабильное и точное прогнозирование движения в режиме реального времени.
preview
Алгоритм оптимизации динго — Dingo Optimization Algorithm (DOA)

Алгоритм оптимизации динго — Dingo Optimization Algorithm (DOA)

В статье представлен новый метаэвристический метод, основанный на охотничьих стратегиях австралийских динго: групповой атаке, преследовании и поиске падали. Посмотрим, как алгоритм оптимизации динго (DOA) покажет себя алгоритмически.
preview
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (SDformerFlow)

Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (SDformerFlow)

В статье представлена адаптация spiking-архитектуры SDformerFlow к задачам плотного анализа микродвижений цены. Пространственно-временная структура обеспечивает высокую детализацию, а спайковая логика — экономичность вычислений и способность работать в условиях разреженных, импульсных данных. В результате перед трейдером открывается инструмент, который фиксирует малейшие сдвиги ликвидности и формирует основу для более точных и стабильных решений в реальном времени.
preview
Нейросети в трейдинге: Агрегация движения по времени (Окончание)

Нейросети в трейдинге: Агрегация движения по времени (Окончание)

Представляем фреймворк TMA — интеллектуальную систему, способную прогнозировать рыночную динамику с достаточной точностью. В этой статье мы собрали все компоненты в единую архитектуру и превратили её в полноценного торгового агента, который анализирует рынок и принимает решения в реальном времени.
preview
Оптимизация на основе биогеографии — Biogeography-Based Optimization (BBO)

Оптимизация на основе биогеографии — Biogeography-Based Optimization (BBO)

Оптимизация на основе биогеографии (BBO) — элегантный метод глобальной оптимизации, вдохновленный природными процессами миграции видов между островами архипелагов. В основе алгоритма лежит простая, но мощная идея: решения с высоким качеством активно делятся своими характеристиками, решения низкого качества активно заимствуют новые черты, создавая естественный поток информации от лучших решений к худшим. Уникальный адаптивный оператор мутации, обеспечивает превосходный баланс между исследованием и эксплуатацией, BBO демонстрирует высокую эффективность на различных задачах.
preview
Ординальное кодирование номинальных переменных

Ординальное кодирование номинальных переменных

В настоящей статье мы обсудим и продемонстрируем, как преобразовать номинальные предикторы в числовые форматы, подходящие для алгоритмов машинного обучения, используя как Python, так и MQL5.
preview
Нейросети в трейдинге: Агрегация движения по времени (TMA)

Нейросети в трейдинге: Агрегация движения по времени (TMA)

Фреймворк TMA открывает новый взгляд на рыночную динамику, позволяя моделям улавливать не только состояние рынка, но и само течение времени. Его способность извлекать закономерности из непрерывного потока данных делает анализ глубже и точнее, чем при классических подходах. А рекуррентная адаптация превращает этот метод в практичный инструмент для работы с реальными котировками.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (SEW-ResNet)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (SEW-ResNet)

Приглашаем к знакомству с фреймворком SEW-ResNet, который позволяет строить глубокие спайковые модели без проблем деградации и с эффективным управлением градиентами. В этой статье мы демонстрируем, как реализовать базовый спайковый нейрон и его алгоритмы средствами MQL5.
preview
Алгоритм кристаллической структуры — Crystal Structure Algorithm (CryStAl)

Алгоритм кристаллической структуры — Crystal Structure Algorithm (CryStAl)

В статье представлены две версии Алгоритма кристаллической структуры, оригинальная и модифицированная. Алгоритм Crystal Structure Algorithm (CryStAl), опубликованный в 2021 году и вдохновленный физикой кристаллических структур, позиционировался как parameter-free метаэвристика для глобальной оптимизации. Однако тестирование выявило критическую проблему алгоритма. Представлена также модифицированная версия CryStAlm, которая исправляет ключевые недостатки оригинала.
preview
Нейросети в трейдинге: Агрегация движения по времени (Основные компоненты)

Нейросети в трейдинге: Агрегация движения по времени (Основные компоненты)

В этой статье теория встречается с практикой. Мы реализуем ключевые модули фреймворка TMA — MPE и MPA. Здесь данные обретают смысл, а кросс-внимание превращается в инструмент точного анализа рыночной динамики. Минимум избыточных операций, максимум эффективности — шаг к интеллектуальному трейдингу нового поколения.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Основные компоненты)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Основные компоненты)

В данной статье представлен практический подход к адаптации современного фреймворка для анализа финансовых потоков средствами MQL5. Рассмотрены ключевые компоненты модели — Depth-Wise свёртки с остаточными связями, конусные Super Kernel Block и модуль глобальной агрегации движения (GMA).
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 55): SAC с приоритетным воспроизведением опыта

Возможности Мастера MQL5, которые вам нужно знать (Часть 55): SAC с приоритетным воспроизведением опыта

Буферы воспроизведения в обучении с подкреплением особенно важны при использовании алгоритмов вне политики (off-policy), таких как DQN или SAC. Это выводит на первый план процесс выборки буфера памяти. В то время как параметры по умолчанию с SAC, например, используют случайный выбор из буфера, буферы с приоритетным воспроизведением опыта (Prioritized Experience Replay buffers) обеспечивают точную настройку путем выборки из буфера на основе оценки TD. Мы рассмотрим важность обучения с подкреплением и, как всегда, изучим только одну гипотезу (без перекрестной проверки) в созданном Мастером советнике.
preview
Взаимная информация как критерий для поэтапного отбора признаков

Взаимная информация как критерий для поэтапного отбора признаков

В настоящей статье мы представляем реализацию поэтапного отбора признаков на MQL5, основанную на взаимной информации между оптимальным набором предикторов и целевой переменной.
preview
Алгоритм эволюции элитных кристаллов — Elite Crystal Evolution Algorithm (CEO-inspired): Практика

Алгоритм эволюции элитных кристаллов — Elite Crystal Evolution Algorithm (CEO-inspired): Практика

Экспериментальное исследование на стандартных бенчмарк-функциях выявляет преимущества и ограничения прямой адаптации комбинаторных алгоритмов. Статья содержит детальное описание механизмов алгоритма ECEA и результатов его тестирования.
preview
Машинное обучение и Data Science (Часть 35): NumPy в MQL5 – искусство создания сложных алгоритмов с меньшим объемом кода

Машинное обучение и Data Science (Часть 35): NumPy в MQL5 – искусство создания сложных алгоритмов с меньшим объемом кода

Библиотека NumPy лежит в основе практически всех алгоритмов машинного обучения на языке программирования Python. В этой статье мы собираемся реализовать аналогичный модуль, содержащий набор всего сложного кода, который поможет нам создавать сложные модели и алгоритмы любого типа.
preview
Поэтапный отбор признаков на MQL5

Поэтапный отбор признаков на MQL5

В этой статье мы представляем модифицированную версию поэтапного отбора признаков, реализованную в MQL5. Настоящий подход основан на методах, описанных Тимоти Мастерсом (Timothy Masters) в работе "Современных алгоритмах интеллектуального анализа данных на C++" и "CUDA C".
preview
Алгоритм искусственной коронарной циркуляции — Artificial Coronary Circulation System (ACCS)

Алгоритм искусственной коронарной циркуляции — Artificial Coronary Circulation System (ACCS)

Метаэвристический алгоритм, имитирующий рост коронарных артерий в сердце человека для задач оптимизации. Использует принципы ангиогенеза (роста новых сосудов), бифуркации (разветвления) и обрезки слабых ветвей для поиска оптимальных решений в многомерном пространстве. Проверка его эффективности на широком спектре задач принесла неожиданные результаты.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Энкодер)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Энкодер)

В статье представлен практический подход к реализации модуля P-SSE для анализа потоков рыночных данных в реальном времени. Продуманное использование стека исторических состояний позволяет каждому срезу рынка обрабатываться лишь один раз, исключая дублирование вычислений и ускоряя онлайн-анализ. Представленные решения обеспечивают высокую точность, устойчивость модели и эффективность обработки, делая фреймворк мощным инструментом для анализа микроимпульсов на финансовых рынках.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Интеграция спайков)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Интеграция спайков)

В статье представлена практическая реализация ключевых компонентов фреймворка SEW-ResNet средствами MQL5. Использование динамических массивов и спайковых механизмов позволяет гибко строить архитектуру модели и эффективно обрабатывать финансовые временные ряды. Предложенные решения показывают, как SEW-ResNet может оптимизировать вычисления и улучшить выделение значимых признаков.
preview
Внедряем систему непрерывной адаптации LLM для алгоритмического трейдинга

Внедряем систему непрерывной адаптации LLM для алгоритмического трейдинга

SEAL (Self-Evolving Adaptive Learning) — система непрерывной адаптации LLM для алгоритмического трейдинга, решающая проблему быстрой деградации моделей на меняющихся рынках. Вместо периодического переобучения, которое занимает часы и стирает старые паттерны, SEAL учится на каждой закрытой сделке, сохраняя приоритетную память важных примеров и автоматически запуская инкрементальный файнтьюнинг при падении точности или смене рыночного режима.
preview
Алгоритм эволюции элитных кристаллов — Elite Crystal Evolution Algorithm (CEO-inspired): Теория

Алгоритм эволюции элитных кристаллов — Elite Crystal Evolution Algorithm (CEO-inspired): Теория

Представлен новый авторский популяционный алгоритм ECEA, вдохновлённый процессом замерзания воды и адаптирующий идеи алгоритма Crystal Energy Optimizer, (CEO) с поиском на графах, для общих задач оптимизации. Алгоритм использует динамическую элитную группу, три стратегии поиска и механизм периодической диверсификации.
preview
Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)

Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)

В этой статье исследуется метод выборки по уровням (slice sampling) — адаптивный алгоритм MCMC, который самостоятельно регулирует параметры сэмплирования. Его эффективность продемонстрирована на моделях байесовской линейной и логистической регрессии, а результаты сравниваются с классическими частотными методами.
preview
Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 2): Создание синтетического символа для тестирования

Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 2): Создание синтетического символа для тестирования

В этой статье мы создаем синтетический символ с использованием генеративно-состязательной сети (GAN), которая включает в себя генерацию реалистичных финансовых данных, имитирующих поведение реальных рыночных инструментов, таких как EURUSD. Модель GAN изучает закономерности и волатильность на основе исторических рыночных данных и создает синтетические ценовые данные с аналогичными характеристиками.
preview
Эко-эволюционный алгоритм — Eco-inspired Evolutionary Algorithm (ECO)

Эко-эволюционный алгоритм — Eco-inspired Evolutionary Algorithm (ECO)

В статье рассматривается алгоритм оптимизации ECO, основанный на экологических концепциях: популяции объединяются в хабитаты по принципу территориальной близости, обмениваются генетическим материалом внутри хабитатов и мигрируют между ними. Несмотря на богатый набор операторов и красивую биологическую метафору, алгоритм показал результат, какой, подробности ниже.
preview
Алгоритм поисковой оптимизации Эбола — Ebola Optimization Search Algorithm (EOSA)

Алгоритм поисковой оптимизации Эбола — Ebola Optimization Search Algorithm (EOSA)

В статье рассматривается алгоритм EOSA, вдохновлённый механизмами распространения вируса Эбола: короткодистанционной передачей через близкий контакт (эксплуатация) и длиннодистанционной передачей через путешествия (исследование). Анализ оригинальной публикации выявил критические проблемы в математических формулах и нереализуемую на практике эпидемиологическую модель, что потребовало существенной переработки алгоритма для получения работоспособной реализации.