Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Метод группового учета аргументов: реализация комбинаторного алгоритма на MQL5

Метод группового учета аргументов: реализация комбинаторного алгоритма на MQL5

В этой статье мы продолжаем изучение семейства алгоритмов группового учета аргументов. Реализуем средствами MQL5 комбинаторный алгоритм, а также его усовершенствованную версию — комбинаторный селективный алгоритм.
preview
Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)

Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)

Продолжаем изучение гибридных моделей последовательностей графов (GSM++), которые интегрируют преимущества различных архитектур, обеспечивая высокую точность анализа и эффективное распределение вычислительных ресурсов. Эти модели эффективно выявляют скрытые закономерности, снижая влияние рыночного шума и повышая качество прогнозирования.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR

Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR

В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить стратегию с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких инструментов с использованием корзины коррелированных ценных бумаг. Сосредоточимся на экзотической валютной паре USDZAR.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (II) - Настройка LoRA

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (II) - Настройка LoRA

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.
preview
Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.
preview
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Статья посвящена практическому построению модели TimeFound для прогнозирования временных рядов. Рассматриваются ключевые этапы реализации основных подходов фреймворка средствами MQL5.
preview
Оптимизация нейробоидами — Neuroboids Optimization Algorithm 2 (NOA2)

Оптимизация нейробоидами — Neuroboids Optimization Algorithm 2 (NOA2)

Новый авторский алгоритм оптимизации NOA2 (Neuroboids Optimization Algorithm 2), объединяет принципы роевого интеллекта с нейронным управлением. NOA2 сочетает механику поведения стаи нейробоидов с адаптивной нейронной системой, позволяющей агентам самостоятельно корректировать свое поведение в процессе поиска оптимума. Алгоритм находится на стадии активной разработки и демонстрирует потенциал для решения сложных задач оптимизации.
preview
Индикатор CAPM модели на рынке Forex

Индикатор CAPM модели на рынке Forex

Адаптация классической модели CAPM для валютного рынка Forex в MQL5. Индикатор рассчитывает ожидаемую доходность и премию за риск на основе исторической волатильности. Показатели возрастают на пиках и впадинах, отражая фундаментальные принципы ценообразования. Практическое применение для контртрендовых и трендовых стратегий с учетом динамики соотношения риска и доходности в реальном времени. Включает математический аппарат и техническую реализацию.
preview
Оптимизация Королевской Битвой — Battle Royale Optimizer (BRO)

Оптимизация Королевской Битвой — Battle Royale Optimizer (BRO)

В статье описан инновационный подход в области оптимизации, сочетающий пространственную конкуренцию решений с адаптивным сужением пространства поиска, делая Battle Royale Optimizer перспективным инструментом для финансового анализа.
preview
Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)

Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)

Фреймворк CATCH сочетает преобразование Фурье и частотный патчинг для точного выявления рыночных аномалий, недоступных традиционным методам. В данной работе мы рассмотрим, как этот подход раскрывает скрытые закономерности в финансовых данных.
preview
Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Фреймворк DUET предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных. Это позволяет адаптировать модели к изменениям во времени и повысить качество прогнозирования за счет устранения шума.
preview
Самоорганизующиеся карты Кохонена в советнике MQL5

Самоорганизующиеся карты Кохонена в советнике MQL5

Самоорганизующиеся карты Кохонена превращают хаос рыночных данных в упорядоченную двумерную карту, где похожие паттерны группируются вместе. Эта статья показывает полную реализацию SOM в торговом советнике MQL5 с четырехстами нейронами и непрерывным обучением. Разбираем алгоритм поиска Best Matching Unit, обновление весов с гауссовой функцией соседства, интеграцию с квантовыми эффектами и создание торговых сигналов. Код открыт, математика понятна, результаты проверяемы.
preview
Собственные векторы и собственные значения: Разведочный анализ данных в MetaTrader 5

Собственные векторы и собственные значения: Разведочный анализ данных в MetaTrader 5

В статье мы рассмотрим различные способы применения собственных векторов и собственных значений в разведочном анализе данных для выявления в них уникальных взаимосвязей.
preview
Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда, разработанный в 2016 году, моделирует поведение верблюдов в пустыне для решения оптимизационных задач, учитывая факторы температуры, запасов и выносливости. В данной работе представлена еще его модифицированная версия (CAm) с ключевыми улучшениями: применение гауссова распределения при генерации решений и оптимизация параметров эффекта оазиса.
preview
Майнинг данных CFTC на Python и ИИ модель на их основе

Майнинг данных CFTC на Python и ИИ модель на их основе

Попробуем смайнить даные CFTC, загрузить отчеты COT и TFF через Python, соединить это с котировками MetaTrader 5 и моделью ИИ и получить прогнозы. Что такое отчеты COT на рынке Форекс? Как использовать отчеты COT и TFF для прогнозирования?
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Символьная регрессия — это форма регрессии, которая начинается с минимальных или нулевых предположений относительно того, как будет выглядеть базовая модель, отображающая изучаемые наборы данных. Несмотря на то, что ее можно реализовать с помощью байесовских методов или нейронных сетей, мы рассмотрим, как реализация с использованием генетических алгоритмов может помочь настроить класс сигналов советника, пригодный для использования в Мастере MQL5.
preview
Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (Окончание)

Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (Окончание)

В статье продолжается работа над реализацией подходов фреймворка STE-FlowNet, который сочетает многопоточную обработку с рекуррентными структурами для точного анализа сложных данных. Проведенные тесты подтвердили его стабильность и гибкость в разных сценариях. Архитектура ускоряет вычисления и позволяет глубже моделировать зависимости во временных рядах. Такой подход открывает новые возможности для практического применения в трейдинге и аналитике.
preview
Теория категорий (Часть 9): Действия моноидов

Теория категорий (Часть 9): Действия моноидов

Статья продолжает серию о реализации теории категорий в MQL5. В статье рассматриваются действия моноидов (monoid actions) как средство преобразования моноидов, описанных в предыдущей статье, для увеличения областей их применения.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

В статье подробно раскрывается SCNN-архитектура и один из вариантов её реализация средствами MQL5. Мы покажем, как декомпозиция временных рядов сочетается с нейросетевыми методами и вниманием.
preview
Пример сетевого анализа причинно-следственных связей (CNA) и модели векторной авторегресси для прогнозирования рыночных событий

Пример сетевого анализа причинно-следственных связей (CNA) и модели векторной авторегресси для прогнозирования рыночных событий

В настоящей статье представлено подробное руководство по реализации сложной торговой системы с использованием сетевого анализа причинно-следственных связей (CNA) и векторной авторегрессии (VAR) в MQL5. В ней излагаются теоретические основы этих методов, предлагаются подробные объяснения ключевых функций торгового алгоритма, а также приводится пример кода для реализации.
preview
Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (HiSSD)

Нейросети в трейдинге: Иерархия навыков для адаптивного поведения агентов (HiSSD)

Предлагаем познакомиться с фреймворком HiSSD, который объединяет иерархическое обучение и мультиагентные подходы для создания адаптивных систем. В этой работе мы подробно рассмотрим, как этот инновационный подход помогает выявлять скрытые закономерности на финансовых рынках и оптимизировать стратегии торговли в условиях децентрализации.
preview
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Hidformer)

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Hidformer)

Предлагаем познакомиться с фреймворком иерархического двухбашенного трансформера (Hidformer), который был разработан для прогнозирования временных рядов и анализа данных. Авторы фреймворка предложили несколько улучшений к архитектуре Transformer, что позволило повысить точность прогнозов и снизить потребление вычислительных ресурсов.
preview
Прогнозирование условного распределения с помощью MLP

Прогнозирование условного распределения с помощью MLP

В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.
preview
Нейросети в трейдинге: Модели многократного уточнения прогнозов (Основные компоненты)

Нейросети в трейдинге: Модели многократного уточнения прогнозов (Основные компоненты)

В статье мы раскрываем внутреннюю механику фреймворка RAFT — одного из самых точных и элегантных подходов к анализу динамических процессов. Мы шаг за шагом адаптируем его идею итеративного уточнения под финансовые временные ряды, создавая прочный фундамент для будущей модели. Читателя ждёт живое погружение в архитектуру, где каждый компонент имеет свой смысл и функцию.
preview
Нейросети в трейдинге: Адаптивная периодическая сегментация (Окончание)

Нейросети в трейдинге: Адаптивная периодическая сегментация (Окончание)

Предлагаем погрузиться в захватывающий мир LightGTS — лёгкого, но мощного фреймворка для прогноза временных рядов, где адаптивная свёртка и RoPE‑кодирование сочетаются с инновационным методами внимания. В нашей статье вы найдёте детальное описание всех компонентов — от создания патчей до сложной смеси экспертов в декодере, готовых к интеграции в MQL5‑проекты. Откройте для себя, как LightGTS выводит автоматическую торговлю на новый уровень!
preview
Нейросимвольные системы в алготрейдинге: Объединение символьных правил и нейронных сетей

Нейросимвольные системы в алготрейдинге: Объединение символьных правил и нейронных сетей

Статья рассказывает об опыте разработки гибридной торговой системы, объединяющей классический технический анализ с нейронными сетями. Автор подробно разбирает архитектуру системы — от базового анализа паттернов и структуры нейросети до механизмов принятия торговых решений, делясь реальным кодом и практическими наблюдениями.
preview
Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt

Фреймворк многозадачного обучения на основе ResNeXt оптимизирует анализ финансовых данных, учитывая их высокую размерность, нелинейность и временные зависимости. Использование групповой свертки и специализированных голов позволяет модели эффективно извлекать ключевые признаки исходных данных.
preview
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (Окончание)

Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (Окончание)

Продолжаем построение алгоритмов, заложенные в основу фреймворка DADA — передового инструмента для обнаружения аномалий во временных рядах. Этот подход позволяет эффективно отличать случайные флуктуации от значимых отклонений. В отличие от классических методов, DADA динамически адаптируется к разным типам данных, выбирая оптимальный уровень сжатия в каждом конкретном случае.
preview
Нейросети в трейдинге: Двухмерные модели пространства связей (Chimera)

Нейросети в трейдинге: Двухмерные модели пространства связей (Chimera)

Откройте для себя инновационный фреймворк Chimera — двухмерную модель пространства состояний, использующую нейросети для анализа многомерных временных рядов. Этот метод предлагает высокую точность с низкими вычислительными затратами, превосходя традиционные подходы и архитектуры Transformer.
preview
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Time-MoE)

Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Time-MoE)

Предлагаем познакомиться с современным фреймворком Time-MoE, адаптированным под задачи прогнозирования временных рядов. В статье мы пошагово реализуем ключевые компоненты архитектуры, сопровождая их объяснениями и практическими примерами. Такой подход позволит вам не только понять принципы работы модели, но и применить их в реальных торговых задачах.
preview
Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Представляем вашему вниманию завершающий этап реализации и тестирования фреймворка TQNet, в котором теория встречается с реальной торговой практикой. Мы пройдём путь от исторического обучения до стресс-теста на свежих рыночных данных, оценивая устойчивость и точность модели. Итоговые результаты — это не только сухие цифры, но и наглядная демонстрация прикладной ценности предложенного подхода.
preview
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)

В этой статье мы знакомимся с фреймворком Mamba4Cast и подробно рассматриваем один из его ключевых компонентов — позиционное кодирование на основе временных меток. Показано, как формируется временной эмбеддинг с учётом календарной структуры данных.
preview
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (K2VAE)

Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (K2VAE)

Предлагаем ознакомиться с оригинальной реализацией фреймворка K²VAE — гибкой модели, способной линейно аппроксимировать сложную динамику в латентном пространстве. В статье показано, как реализовать ключевые компоненты на языке MQL5, включая параметризованные матрицы и их управление вне стандартных нейросетевых слоёв. Материал будет полезен тем, кто ищет практический подход к созданию интерпретируемых моделей временных рядов.
preview
Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Продолжение исследования алгоритма хаотической оптимизации. Вторая часть статьи посвящена практическим аспектам реализации алгоритма, его тестированию и выводам.
preview
Применение локализованного отбора признаков на Python и MQL5

Применение локализованного отбора признаков на Python и MQL5

В настоящей статье рассматривается алгоритм отбора признаков, представленный в статье "Выбор локальных признаков для классификации данных» ('Local Feature Selection for Data Classification') Наргеса Арманфарда и соавторов (Narges Armanfard et al.). Алгоритм реализован на Python для построения моделей бинарных классификаторов, которые могут быть интегрированы с приложениями MetaTrader 5 для логического вывода.
preview
Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга, как работает и как разрабатывается по шагам. Создаем алгоритм распознавания RGB-изображений графиков цен с механизмом внимания и двунаправленным LSTM-слоем. В результате получаем рабочую модель прогнозирования цены евро-доллара с точностью до 55% на валидационном участке.
preview
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)

Эта статья позволит вам увидеть, как Mamba4Cast превращает теорию в рабочий торговый алгоритм и подготовить почву для собственных экспериментов. Не упустите возможность получить полный спектр знаний и вдохновения для развития собственной стратегии.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Предлагаем познакомиться с фреймворком HimNet, который сочетает гибкость пространственно-временной адаптации с высокой вычислительной эффективностью, позволяя получать точные и стабильные прогнозы на финансовых временных рядах. В статье подробно показано, как его ключевые компоненты взаимодействуют между собой, превращая сложные алгоритмы в управляемую архитектуру.