Redes neuronales en el trading: Transformador jerárquico de doble torre (Final)
Seguimos construyendo el modelo del transformador jerárquico Hidformer de dos torres, diseñado para analizar y predecir series temporales multivariantes complejas. En este artículo llevaremos el trabajo iniciado anteriormente a su conclusión lógica probando el modelo con datos históricos reales.
Características del Wizard MQL5 que debe conocer (Parte 51): Aprendizaje por refuerzo con SAC
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que utiliza tres redes neuronales. Una red de actores y dos redes de críticos. Estos modelos de aprendizaje automático se emparejan en una relación maestro-esclavo en la que los críticos se modelan para mejorar la precisión de las previsiones de la red de actores. Al tiempo que introducimos ONNX en esta serie, exploramos cómo estas ideas podrían ponerse a prueba como una señal personalizada de un asesor experto ensamblado por un asistente.
Búsqueda dialéctica - Dialectic Search (DA)
Hoy nos familiarizaremos con el Algoritmo Dialéctico (DA), un nuevo método de optimización global inspirado en el concepto filosófico de la dialéctica. El algoritmo explota la singular división de la población en pensadores especulativos y prácticos. Las pruebas demuestran un impresionante rendimiento de hasta el 98% en tareas pequeñas y una eficiencia global del 57,95%. El artículo explica estas métricas y presenta una descripción detallada del algoritmo y resultados experimentales con distintos tipos de características.
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (III) Ajuste del adaptador
Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
Neurona biológica para la previsión de series temporales financieras
Construimos un sistema de neuronas biológicamente correcto para la predicción de series temporales. La introducción de un medio similar al plasma en la arquitectura de una red neuronal ha creado una especie de "mente colectiva", en la que cada neurona influye en el trabajo del sistema no solo a través de conexiones directas, sino también mediante interacciones electromagnéticas de largo alcance. ¿Cómo se comportará el sistema de modelización neural del cerebro en el mercado?
Redes neuronales en el trading: Transformador jerárquico de doble torre (Hidformer)
Hoy le proponemos introducir un framework de transformador jerárquico de dos torres (Hidformer) desarrollado para la previsión de series temporales y el análisis de datos. Los autores del framework propusieron varias mejoras en la arquitectura del Transformer que mejoran la precisión de las predicciones y reducen el consumo de recursos computacionales.
Integración de MQL5 con paquetes de procesamiento de datos (Parte 4): Gestión de Big Data
Esta parte explora técnicas avanzadas para integrar MQL5 con potentes herramientas de procesamiento de datos y se centra en el manejo eficiente de grandes volúmenes de datos para mejorar el análisis comercial y la toma de decisiones.
Indicador de previsión de volatilidad con Python
Hoy pronosticaremos la volatilidad extrema futura utilizando una clasificación binaria. Asimismo, crearemos un indicador de previsión de volatilidad extrema usando el aprendizaje automático.
Métodos de ensamble para mejorar predicciones numéricas en MQL5
En este artículo presentamos la implementación de varios métodos de aprendizaje por ensamble en MQL5 y examinamos su efectividad en distintos escenarios.
ADAM poblacional (Estimación Adaptativa de Momentos)
Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
Algoritmo de viaje evolutivo en el tiempo — Time Evolution Travel Algorithm (TETA)
Se trata de un algoritmo propio. En este artículo, le presentaremos el Algoritmo de viaje evolutivo en el tiempo (TETA), inspirado en el concepto de universos paralelos y flujos temporales. La idea básica del algoritmo es que, si bien no es posible viajar en el tiempo en el sentido habitual, podemos elegir una secuencia de acontecimientos que generen realidades distintas.
Algoritmo de trading evolutivo con aprendizaje por refuerzo y extinción de individuos no rentables (ETARE)
Hoy le presentamos un innovador algoritmo comercial que combina algoritmos evolutivos con aprendizaje profundo por refuerzo para la negociación de divisas. El algoritmo utiliza un mecanismo de extinción de individuos ineficaces para optimizar la estrategia comercial.
Perspectivas bursátiles a través del volumen: Confirmación de tendencias
La técnica mejorada de confirmación de tendencias combina la acción del precio, el análisis del volumen y el aprendizaje automático para identificar movimientos genuinos del mercado. Requiere tanto rupturas de precios como aumentos de volumen (un 50% por encima de la media) para la validación de las operaciones, al tiempo que utiliza una red neuronal LSTM para obtener una confirmación adicional. El sistema emplea el dimensionamiento de posiciones basado en ATR y la gestión dinámica del riesgo, lo que lo hace adaptable a diversas condiciones del mercado y permite filtrar las señales falsas.
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)
Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.
Métodos de discretización de los movimientos de precios en Python
Hoy analizaremos varios métodos de discretización de precios en Python + MQL5. En este artículo compartiré mi experiencia práctica en el desarrollo de una biblioteca Python que implementa toda una gama de enfoques para la formación de barras: desde las clásicas Volume y Range bars hasta métodos más exóticos como Renko y Kagi, velas de ruptura de tres líneas, barras de Rango; ¿cuáles son sus estadísticas, de qué otra forma se pueden representar los precios de forma discreta?
Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias
CatBoost es un potente modelo de aprendizaje automático basado en árboles que se especializa en la toma de decisiones basada en características estacionarias. Otros modelos basados en árboles, como XGBoost y Random Forest, comparten características similares en cuanto a su solidez, capacidad para manejar patrones complejos e interpretabilidad. Estos modelos tienen una amplia gama de usos, desde el análisis de características hasta la gestión de riesgos. En este artículo, vamos a explicar el procedimiento para utilizar un modelo CatBoost entrenado como filtro para una estrategia clásica de seguimiento de tendencias con cruce de medias móviles.
Aprendizaje automático y Data Science (Parte 32): Mantener actualizados los modelos de IA, aprendizaje en línea
En el cambiante mundo del comercio, adaptarse a los cambios del mercado no es solo una opción, es una necesidad. Cada día surgen nuevos patrones y tendencias, lo que dificulta que incluso los modelos de aprendizaje automático más avanzados sigan siendo eficaces ante condiciones en constante evolución. En este artículo, exploraremos cómo mantener tus modelos relevantes y receptivos a los nuevos datos del mercado mediante el reentrenamiento automático.
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (MacroHFT)
Hoy le propongo familiarizarse con el framework MacroHFT, que aplica el aprendizaje por refuerzo dependiente del contexto y la memoria para mejorar las decisiones en el comercio de criptodivisas de alta frecuencia utilizando datos macroeconómicos y agentes adaptativos.
Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)
En este trabajo, analizaremos un nuevo algoritmo de optimización basado en la población, el CPA (Cyclic Parthenogenesis Algorithm), inspirado en la estrategia reproductiva única de los pulgones. El algoritmo combina dos mecanismos de reproducción: la partenogénesis y la reproducción sexual, y utiliza una estructura de población colonial con posibilidad de migración entre colonias. Las características clave del algoritmo son el cambio adaptativo entre diferentes estrategias de cría y un sistema de intercambio de información entre colonias usando un mecanismo de vuelo.
Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)
Seguimos aplicando los planteamientos propuestos por los autores del framework FinCon. FinCon es un sistema multiagente basado en grandes modelos lingüísticos (LLM). Hoy pondremos en marcha los módulos necesarios y efectuaremos pruebas exhaustivas del modelo con datos históricos reales.
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (Final)
Seguimos trabajando en la implementación de los algoritmos para el agente multimodal de comercio financiero (FinAgent), diseñado para analizar los datos multimodales de la dinámica de mercado y los patrones comerciales históricos.
Modelos de regresión no lineal en la bolsa de valores
Modelos de regresión no lineal en la bolsa de valores: ¿Es posible predecir los mercados financieros? Consideremos la creación de un modelo para pronosticar precios para EURUSD y crear dos robots basados en él: en Python y MQL5.
Perspectivas bursátiles a través del volumen: más allá de los gráficos OHLC
Sistema de negociación algorítmica que combina el análisis de volumen con técnicas de aprendizaje automático, concretamente redes neuronales LSTM. A diferencia de los enfoques tradicionales de negociación, que se centran principalmente en los movimientos de los precios, este sistema hace hincapié en los patrones de volumen y sus derivados para predecir los movimientos del mercado. La metodología incorpora tres componentes principales: análisis de derivadas de volumen (derivadas primera y segunda), predicciones LSTM para patrones de volumen e indicadores técnicos tradicionales.
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales
La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
Algoritmo de optimización aritmética (AOA): De AOA a SOA (Simple Optimization Algorithm)
En este artículo, presentamos el algoritmo de optimización aritmética (AOA) basado en operaciones aritméticas simples: suma, resta, multiplicación y división. Estas operaciones matemáticas básicas sirven como base para encontrar soluciones óptimas a diversos problemas.
Información mutua como criterio para la selección de características paso a paso
En este artículo, presentamos una implementación MQL5 de selección de características paso a paso basada en la información mutua entre un conjunto de predictores óptimos y una variable objetivo.
Uso de reglas de asociación en el análisis de datos de Forex
¿Cómo aplicar las reglas predictivas del análisis minorista de supermercados al mercado Forex real? ¿Cómo se relacionan las compras de galletas, leche y pan con las transacciones bursátiles? El artículo analiza un enfoque innovador del trading algorítmico basado en el uso de reglas de asociación.
Características del Wizard MQL5 que debe conocer (Parte 47): Aprendizaje por refuerzo con diferencia temporal
La diferencia temporal es otro algoritmo del aprendizaje por refuerzo que actualiza los valores Q basándose en la diferencia entre las recompensas previstas y las reales durante el entrenamiento del agente. Se centra específicamente en la actualización de los valores Q sin tener en cuenta su emparejamiento estado-acción. Por lo tanto, veremos cómo aplicar esto, tal y como hemos hecho en artículos anteriores, en un Asesor Experto creado mediante un asistente.
Redes neuronales en el trading: Sistema multiagente con validación conceptual (FinCon)
Hoy le proponemos familiarizarnos con el framework FinCon, un sistema multiagente basado en grandes modelos lingüísticos (LLM). El framework usa el refuerzo verbal conceptual para mejorar la toma de decisiones y la gestión del riesgo con el fin de realizar eficazmente diversas tareas financieras.
Funciones de activación neuronal durante el aprendizaje: ¿la clave de una convergencia rápida?
En este artículo presentamos un estudio de la interacción de distintas funciones de activación con algoritmos de optimización en el contexto del entrenamiento de redes neuronales. Se presta especial atención a la comparación entre el ADAM clásico y su versión poblacional al tratar con una amplia gama de funciones de activación, incluidas las funciones oscilatorias ACON y Snake. Usando una arquitectura MLP minimalista (1-1-1) y un único ejemplo de entrenamiento, la influencia de las funciones de activación en el proceso de optimización se aísla de otros factores. Asimismo, propondremos un enfoque para controlar los pesos de la red mediante los límites de las funciones de activación y un mecanismo de reflexión de pesos que evitará los problemas de saturación y estancamiento en el aprendizaje.
Computación cuántica y trading: Una nueva mirada a las previsiones de precios
En el artículo analizaremos un enfoque innovador para predecir los movimientos de precios en los mercados financieros utilizando la computación cuántica. La atención se centrará en la aplicación del algoritmo Quantum Phase Estimation (QPE) para encontrar precursores de patrones de precios, lo que permitirá acelerar considerablemente el proceso de análisis de los datos de mercado.
De Python a MQL5: Un viaje hacia los sistemas de trading inspirados en la cuántica
El artículo analiza el desarrollo de un sistema de negociación inspirado en la cuántica, pasando de un prototipo en Python a una implementación en MQL5 para la negociación en el mundo real. El sistema utiliza principios de computación cuántica, como la superposición y el entrelazamiento, para analizar los estados del mercado, aunque funciona en ordenadores clásicos utilizando simuladores cuánticos. Las características principales incluyen un sistema de tres qubits para analizar ocho estados del mercado simultáneamente, períodos de revisión de 24 horas y siete indicadores técnicos para el análisis del mercado. Aunque los índices de precisión puedan parecer modestos, proporcionan una ventaja significativa cuando se combinan con estrategias adecuadas de gestión de riesgos.
Analizamos el código binario de los precios en bolsa (Parte I): Una nueva visión del análisis técnico
En este artículo presentaremos un enfoque innovador del análisis técnico basado en la conversión de los movimientos de los precios en código binario. El autor demostrará cómo diversos aspectos del comportamiento de los mercados -desde simples movimientos de precios hasta patrones complejos- pueden codificarse en una secuencia de ceros y unos.
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)
Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
Redes generativas antagónicas (GAN) para datos sintéticos en modelos financieros (Parte 1): Introducción a las GAN y los datos sintéticos en modelos financieros
Este artículo presenta a los operadores bursátiles las redes generativas antagónicas (Generative Adversarial Networks, GAN) para generar datos financieros sintéticos, abordando las limitaciones de datos en el entrenamiento de modelos. Este artículo presenta a los operadores bursátiles las redes generativas antagónicas (GAN) para generar datos financieros sintéticos, abordando las limitaciones de datos en el entrenamiento de modelos.
Redes neuronales en el trading: Agente con memoria multinivel (Final)
Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
Redes neuronales en el trading: Agente con memoria multinivel
Los enfoques de memoria multinivel que imitan los procesos cognitivos humanos permiten procesar datos financieros complejos y adaptarse a nuevas señales, lo cual contribuye a mejorar la eficacia de las decisiones de inversión en mercados dinámicos.
Algoritmo de Big Bang y Big Crunch
En el presente artículo, le presentamos el método Big Bang - Big Crunch, que consta de dos fases clave: la creación cíclica de puntos aleatorios y su compresión hasta una solución óptima. Este enfoque combina exploración y refinamiento, lo cual permite encontrar soluciones progresivamente mejores y descubre nuevas oportunidades en el campo de la optimización.
Selección de características paso a paso en MQL5
En este artículo, presentamos una versión modificada de la selección de características paso a paso, implementada en MQL5. Este enfoque se basa en las técnicas descritas en Algoritmos modernos de minería de datos en C++ y CUDA C de Timothy Masters.
Indicador de fuerza y dirección de la tendencia en barras 3D
Hoy estudiaremos un nuevo enfoque del análisis de las tendencias del mercado basado en la visualización tridimensional y el análisis tensorial de la microestructura del mercado.