Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)

Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)

A aplicação de processos de difusão anisotrópicos para codificação dos dados brutos no espaço latente hiperbólico, conforme proposto no framework HypDiff, contribui para a preservação das características topológicas da situação atual do mercado e melhora a qualidade de sua análise. No artigo anterior, iniciamos a implementação das abordagens propostas usando MQL5. Hoje, continuaremos esse trabalho iniciado, levando-o até sua conclusão lógica.
preview
Previsão de Tendência com LSTM para Estratégias de Seguimento de Tendência

Previsão de Tendência com LSTM para Estratégias de Seguimento de Tendência

Memória de Curto e Longo Prazo (LSTM) é um tipo de rede neural recorrente (RNN) projetada para modelar dados sequenciais, capturando de forma eficaz dependências de longo prazo e resolvendo o problema do gradiente desvanecente. Neste artigo, exploraremos como utilizar LSTM para prever tendências futuras, aprimorando o desempenho de estratégias de seguimento de tendência. O artigo abordará a introdução de conceitos-chave e a motivação por trás do desenvolvimento, a obtenção de dados do MetaTrader 5, o uso desses dados para treinar o modelo em Python, a integração do modelo de aprendizado de máquina no MQL5 e a reflexão sobre os resultados e aspirações futuras com base em backtesting estatístico.
preview
Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)

Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)

O artigo descreve uma abordagem inovadora no campo da otimização, que combina a competição espacial entre soluções com o estreitamento adaptativo do espaço de busca, tornando o Battle Royale Optimizer uma ferramenta promissora para análise financeira.
preview
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
preview
Algoritmo de busca circular — Circle Search Algorithm (CSA)

Algoritmo de busca circular — Circle Search Algorithm (CSA)

Este artigo apresenta um novo algoritmo metaheurístico de otimização, o CSA (Circle Search Algorithm), baseado nas propriedades geométricas do círculo. O algoritmo utiliza o princípio de movimentação de pontos ao longo das tangentes para encontrar a solução ideal, combinando fases de diversificação global e intensificação local.
preview
Aplicando Seleção de Recursos Localizada em Python e MQL5

Aplicando Seleção de Recursos Localizada em Python e MQL5

Este artigo explora um algoritmo de seleção de recursos introduzido no artigo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. O algoritmo é implementado em Python para construir modelos de classificação binária que podem ser integrados com aplicativos MetaTrader 5 para inferência.
preview
Rede neural na prática: Gradiente Descendente Estocástico

Rede neural na prática: Gradiente Descendente Estocástico

O artigo explica, na prática, como calcular e aplicar os gradientes de peso e viés no neurônio linear em MQL5, além de apresentar a variante estocástica do gradiente descendente. Discutimos critérios de parada, limitação de iterações e efeitos da amostragem parcial. No terminal do MetaTrader 5, são exibidos resultados e uma plotagem simples. O leitor é orientado a alterar o conjunto de treino e analisar o comportamento.
preview
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.
preview
Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.
preview
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
preview
Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA

Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA

O SARSA (State-Action-Reward-State-Action, estado–ação–recompensa–estado–ação) é outro algoritmo que pode ser utilizado na implementação de aprendizado por reforço. Vamos analisar como esse algoritmo pode ser implementado como um modelo independente (e não apenas como um mecanismo de aprendizado) em Expert Advisors gerados no Wizard, de forma semelhante ao que fizemos nos casos de Q-learning e DQN.
preview
Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)

Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)

Este artigo apresenta o algoritmo de otimização de força central (CFO), inspirado nas leis da gravitação. É explorado como os princípios da atração física podem resolver problemas de otimização, onde soluções mais pesadas atraem seus análogos menos bem-sucedidos.
preview
Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

O framework CATCH combina a transformada de Fourier e o patching de frequência para a identificação precisa de anomalias de mercado, inacessíveis aos métodos tradicionais. Neste trabalho, examinaremos como essa abordagem revela padrões ocultos nos dados financeiros.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização

Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização

A regularização é uma forma de penalizar a função de perda em proporção ao peso discreto aplicado ao longo das várias camadas de uma rede neural. Vamos observar a importância de algumas formas de regularização e o impacto que isso pode ter em testes realizados com um Expert Advisor montado por um assistente.
preview
Algoritmo de otimização caótica — Chaos optimization algorithm (COA)

Algoritmo de otimização caótica — Chaos optimization algorithm (COA)

Algoritmo de otimização caótica (COA) aprimorado, que combina a influência do caos com mecanismos adaptativos de busca. O algoritmo utiliza diversos mapeamentos caóticos e componentes inerciais para explorar o espaço de busca. O artigo revela os fundamentos teóricos dos métodos caóticos de otimização financeira.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda

A função de perda (Loss Function) é uma métrica fundamental nos algoritmos de aprendizado de máquina, que fornece feedback para o processo de aprendizado ao quantificar o quão bem um determinado conjunto de parâmetros se comporta em comparação com o valor-alvo esperado. Vamos explorar os diferentes formatos dessa função na classe personalizada do Assistente MQL5.
preview
Recursos do Assistente MQL5 que você precisa conhecer (Parte 47): Aprendizado por reforço (algoritmo de diferenças temporais)

Recursos do Assistente MQL5 que você precisa conhecer (Parte 47): Aprendizado por reforço (algoritmo de diferenças temporais)

Temporal Difference (TD, diferenças temporais) é mais um algoritmo de aprendizado por reforço, que atualiza os valores Q com base na diferença entre as recompensas previstas e as recompensas reais durante o treinamento do agente. A ênfase está na atualização dos valores Q sem considerar necessariamente seus pares "estado-ação" (state-action). Como de costume, veremos como esse algoritmo pode ser aplicado em um EA, criado com a ajuda do Assistente.
preview
Otimização com neuroboids — Neuroboids Optimization Algorithm 2 (NOA2)

Otimização com neuroboids — Neuroboids Optimization Algorithm 2 (NOA2)

O novo algoritmo autoral de otimização NOA2 (Neuroboids Optimization Algorithm 2) combina os princípios da inteligência de enxame com controle baseado em redes neurais. O NOA2 funde a mecânica do comportamento coletivo dos neuroboids com um sistema neural adaptativo, que permite aos agentes ajustar seu comportamento de forma autônoma durante o processo de busca pelo ótimo. O algoritmo está em fase ativa de desenvolvimento e demonstra potencial para resolver tarefas complexas de otimização.
preview
Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD

Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD

Na discussão de hoje, utilizamos dados alternativos diários do Federal Reserve de St. Louis sobre o Índice Amplo do Dólar dos EUA e um conjunto de outros indicadores macroeconômicos para prever a taxa de câmbio futura do EURUSD. Infelizmente, embora os dados aparentem ter uma correlação quase perfeita, não conseguimos obter ganhos materiais em nossa acurácia de modelo, o que pode nos indicar que os investidores talvez estejam melhores usando apenas as cotações normais do mercado.
preview
Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)

Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)

Na discussão de hoje, examinamos a estratégia de análise de múltiplos time-frames para descobrir em qual time-frame nosso modelo de IA apresenta melhor desempenho. Nossa análise nos levou a concluir que os time-frames Mensal e de 1 Hora produzem modelos com taxas de erro relativamente baixas no par EURUSD. Usamos isso a nosso favor e criamos um algoritmo de negociação que faz previsões de IA no time-frame Mensal e executa suas negociações no time-frame de 1 Hora.
preview
Otimização de recifes de coral — Coral Reefs Optimization (CRO)

Otimização de recifes de coral — Coral Reefs Optimization (CRO)

Neste artigo é apresentada uma análise abrangente do algoritmo de otimização de recifes de coral (CRO), um método meta-heurístico inspirado nos processos biológicos de formação e desenvolvimento de recifes de coral. Ele modela aspectos-chave da evolução dos corais: reprodução externa e interna, fixação de larvas, reprodução assexuada e competição por espaço limitado no recife. É dada atenção especial à versão aprimorada do algoritmo.
preview
Redes Generativas Adversariais (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 1): Introdução às GANs e Dados Sintéticos em Modelagem Financeira

Redes Generativas Adversariais (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 1): Introdução às GANs e Dados Sintéticos em Modelagem Financeira

Este artigo introduz os traders às Redes Generativas Adversariais (GANs) para geração de dados financeiros sintéticos, abordando limitações de dados no treinamento de modelos. Ele cobre os fundamentos das GANs, implementações em Python e MQL5, e aplicações práticas em finanças, capacitando traders a aumentar a precisão e a robustez dos modelos por meio de dados sintéticos.
preview
Modelo matricial de previsão baseado em cadeia de Markov

Modelo matricial de previsão baseado em cadeia de Markov

Criamos um modelo matricial de previsão baseado em uma cadeia de Markov. O que são cadeias de Markov e como uma cadeia de Markov pode ser usada para trading no Forex.
preview
Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação

Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação

Continuação do estudo do algoritmo de otimização caótica. A segunda parte do artigo é dedicada aos aspectos práticos da implementação do algoritmo, ao seu teste e às conclusões.
preview
Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning

Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning

Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e então aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
preview
Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)

Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)

Damos continuidade ao conhecimento do framework Mamba4Cast. E hoje vamos nos aprofundar na implementação prática das abordagens propostas. O Mamba4Cast foi criado não para um longo aquecimento em cada nova série temporal, mas para entrar em operação de forma instantânea. Graças à ideia de Zero-Shot Forecasting, o modelo é capaz de fornecer imediatamente previsões de alta qualidade em dados reais sem retreinamento e sem ajuste fino de hiperparâmetros.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 34): Embedding de Preços com um RBM Não Convencional

Técnicas do MQL5 Wizard que você deve conhecer (Parte 34): Embedding de Preços com um RBM Não Convencional

Máquinas de Boltzmann Restritas são uma forma de rede neural que foi desenvolvida no meio da década de 1980, numa época em que os recursos computacionais eram extremamente caros. No início, ela dependia de Gibbs Sampling e Divergência Contrastiva para reduzir a dimensionalidade ou capturar as probabilidades/propriedades ocultas sobre os conjuntos de dados de treinamento de entrada. Examinamos como o Backpropagation pode realizar de forma similar quando o RBM 'embebe' os preços para um Multi-Layer-Perceptron de previsão.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 35): Regressão por Vetores de Suporte

Técnicas do MQL5 Wizard que você deve conhecer (Parte 35): Regressão por Vetores de Suporte

A Regressão por Vetores de Suporte é uma maneira idealista de encontrar uma função ou 'hiperplano' que melhor descreva a relação entre dois conjuntos de dados. Tentamos explorar isso na previsão de séries temporais dentro das classes personalizadas do MQL5 wizard.
preview
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
preview
Mineração de dados da CFTC em Python e modelo de IA com base neles

Mineração de dados da CFTC em Python e modelo de IA com base neles

Vamos tentar minerar dados da CFTC, carregar os relatórios COT e TFF via Python, conectar isso às cotações do MetaTrader 5 e a um modelo de IA e obter previsões. O que são os relatórios COT no mercado Forex? Como usar os relatórios COT e TFF para previsão?
preview
Codificação ordinal de variáveis nominais

Codificação ordinal de variáveis nominais

Neste artigo, discutiremos e demonstraremos como transformar variáveis nominais em formatos numéricos adequados para algoritmos de aprendizado de máquina, utilizando tanto Python quanto MQL5.
preview
Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)

Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)

Este artigo permitirá que você veja como o Mamba4Cast transforma a teoria em um algoritmo de trading funcional e prepara o terreno para seus próprios experimentos. Não perca a oportunidade de obter um espectro completo de conhecimento e inspiração para o desenvolvimento da sua própria estratégia.
preview
Análise quantitativa de tendências: coletando estatísticas em Python

Análise quantitativa de tendências: coletando estatísticas em Python

O que é a análise quantitativa de tendências no mercado Forex. Coletando estatísticas sobre as tendências, sua magnitude e distribuição no par de moedas EURUSD. Como a análise quantitativa de tendências ajuda a criar um EA lucrativo.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC

Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC

Soft Actor Critic é um algoritmo de Aprendizado por Reforço que utiliza 3 redes neurais. Uma rede ator e 2 redes críticas. Esses modelos de aprendizado de máquina são combinados em uma parceria mestre-escravo onde as redes críticas são modeladas para melhorar a precisão de previsão da rede ator. Ao mesmo tempo em que introduzimos ONNX nesta série, exploramos como essas ideias podem ser colocadas à prova como um sinal personalizado de um Expert Advisor montado pelo wizard.
preview
Visão computacional para trading (Parte 2): complexificando a arquitetura até a análise 2D de imagens RGB

Visão computacional para trading (Parte 2): complexificando a arquitetura até a análise 2D de imagens RGB

Visão computacional para trading, como funciona e como é desenvolvida passo a passo. Criamos um algoritmo de reconhecimento de imagens RGB de gráficos de preços com um mecanismo de atenção e uma camada LSTM bidirecional. Como resultado, obtemos um modelo funcional de previsão do preço do euro-dólar com precisão de até 55% no conjunto de validação.
preview
Integrando MQL5 com pacotes de processamento de dados (Parte 4): Manipulação de Big Data

Integrando MQL5 com pacotes de processamento de dados (Parte 4): Manipulação de Big Data

Explorando técnicas avançadas para integrar o MQL5 com ferramentas poderosas de processamento de dados, esta parte se concentra no tratamento eficiente de big data para aprimorar a análise de negociação e a tomada de decisões.
preview
Algoritmo do camelo — Camel Algorithm (CA)

Algoritmo do camelo — Camel Algorithm (CA)

O Algoritmo do camelo, desenvolvido em 2016, modela o comportamento dos camelos no deserto para resolver problemas de otimização, levando em conta fatores de temperatura, reservas e resistência. Neste trabalho é apresentada ainda uma versão modificada dele (CAm), com melhorias-chave, como a aplicação da distribuição gaussiana na geração de soluções e a otimização dos parâmetros do efeito de oásis.
preview
Redes neurais em trading: Framework de previsão cruzada de domínio de séries temporais (TimeFound)

Redes neurais em trading: Framework de previsão cruzada de domínio de séries temporais (TimeFound)

Neste artigo, montamos passo a passo o núcleo do modelo inteligente TimeFound, adaptado para tarefas reais de previsão de séries temporais. Se você se interessa pela implementação prática de algoritmos de patching com redes neurais em MQL5, você está no lugar certo.
preview
Rede neural na prática: O caso da porta XOR

Rede neural na prática: O caso da porta XOR

Neste artigo tentarei mostrar a você, meu caro leitor, que nem tudo é como parece. Muitas das vezes somos levados a pensar que as coisas são de uma dada maneira, quando na verdade, podemos estar sendo levados a pensar algo que não necessariamente é verdade. Redes neurais, são de longe um dos assuntos mais interessantes em termos gerais. Tanto pelo ponto de vista matemático, eletrônico ou mesmo de software. Porém, diferente do que muitos acreditam ou pregam. Redes neurais não são nem de longe, a questão e solução definitiva. São apenas um ramo de pesquisa, no qual devemos sempre estar estudando e procurando nos informar sobre o que acontece nos bastidores.
preview
Indicador do modelo CAPM no mercado Forex

Indicador do modelo CAPM no mercado Forex

Adaptação do modelo clássico CAPM para o mercado cambial Forex em MQL5. O indicador calcula a rentabilidade esperada e o prêmio de risco com base na volatilidade histórica. Os indicadores aumentam nos picos e nas depressões, refletindo os princípios fundamentais de precificação. Aplicação prática para estratégias contra a tendência e de seguimento de tendência, levando em conta a dinâmica da relação entre risco e rentabilidade em tempo real. Inclui o aparato matemático e a implementação técnica.