Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)

Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)

Um novo método metaheurístico baseado na abordagem fractal de divisão do espaço de busca para resolver tarefas de otimização. O algoritmo identifica e divide sequencialmente áreas promissoras, criando uma estrutura fractal auto-semelhante que concentra os recursos computacionais nos trechos mais promissores. Um mecanismo exclusivo de mutação, direcionado para as melhores soluções, garante um equilíbrio ideal entre diversificação e intensificação do espaço de busca, aumentando significativamente a eficiência do algoritmo.
preview
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)

Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)

Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.
preview
Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação

Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação

Continuação do estudo do algoritmo de otimização caótica. A segunda parte do artigo é dedicada aos aspectos práticos da implementação do algoritmo, ao seu teste e às conclusões.
preview
Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco

Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco

O artigo contém uma descrição detalhada do algoritmo de cálculo de taxas cruzadas, a visualização da matriz de desequilíbrios e recomendações para a configuração ideal dos parâmetros MinDiscrepancy e MaxRisk para uma negociação eficiente. O sistema calcula automaticamente o "valor justo" de cada par de moedas por meio de taxas cruzadas, gerando sinais de compra em desvios negativos e de venda em desvios positivos.
preview
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples

Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples

Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
preview
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.
preview
Algoritmo de otimização caótica — Chaos optimization algorithm (COA)

Algoritmo de otimização caótica — Chaos optimization algorithm (COA)

Algoritmo de otimização caótica (COA) aprimorado, que combina a influência do caos com mecanismos adaptativos de busca. O algoritmo utiliza diversos mapeamentos caóticos e componentes inerciais para explorar o espaço de busca. O artigo revela os fundamentos teóricos dos métodos caóticos de otimização financeira.
preview
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)

Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)

Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.
preview
Previsão de barras Renko com a ajuda de IA CatBoost

Previsão de barras Renko com a ajuda de IA CatBoost

Como usar barras Renko junto com IA? Vamos analisar o Renko-trading no Forex com precisão de previsões de até 59.27%. Exploraremos as vantagens das barras Renko para filtrar o ruído do mercado, entenderemos por que indicadores de volume são mais importantes do que padrões de preço e como configurar o tamanho ideal do bloco Renko para EURUSD. Um guia passo a passo para integrar CatBoost, Python e MetaTrader 5 para criar seu próprio sistema de previsão Renko Forex. Perfeito para traders que desejam ir além da análise técnica tradicional.
preview
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
preview
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
preview
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC

Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC

Soft Actor Critic é um algoritmo de Aprendizado por Reforço que utiliza 3 redes neurais. Uma rede ator e 2 redes críticas. Esses modelos de aprendizado de máquina são combinados em uma parceria mestre-escravo onde as redes críticas são modeladas para melhorar a precisão de previsão da rede ator. Ao mesmo tempo em que introduzimos ONNX nesta série, exploramos como essas ideias podem ser colocadas à prova como um sinal personalizado de um Expert Advisor montado pelo wizard.
preview
Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning

Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning

Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e então aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
preview
Integrando MQL5 com pacotes de processamento de dados (Parte 4): Manipulação de Big Data

Integrando MQL5 com pacotes de processamento de dados (Parte 4): Manipulação de Big Data

Explorando técnicas avançadas para integrar o MQL5 com ferramentas poderosas de processamento de dados, esta parte se concentra no tratamento eficiente de big data para aprimorar a análise de negociação e a tomada de decisões.
preview
Modelos ocultos de Markov para previsão de volatilidade com consideração de tendência

Modelos ocultos de Markov para previsão de volatilidade com consideração de tendência

Os modelos ocultos de Markov (HMM) são uma poderosa ferramenta estatística que permite identificar estados ocultos do mercado com base na análise de movimentos observáveis dos preços. No trading, os HMM permitem melhorar a previsão da volatilidade e são aplicados no desenvolvimento de estratégias de tendência, modelando as mudanças nos regimes de mercado. Neste artigo, apresentaremos um processo passo a passo para o desenvolvimento de uma estratégia de seguimento de tendência que utiliza HMM como filtro para previsão de volatilidade.
preview
Aplicação de métodos de ensemble para tarefas de classificação em MQL5

Aplicação de métodos de ensemble para tarefas de classificação em MQL5

Neste artigo, apresentamos a implementação de vários classificadores em ensemble na linguagem MQL5 e analisamos sua eficiência em diferentes situações.
preview
Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)

Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)

Propomos conhecer o framework Actor-Director-Critic, que combina aprendizado hierárquico e uma arquitetura com múltiplos componentes para criar estratégias de trading adaptativas. Neste artigo, analisamos em detalhe como o uso do Diretor para classificar as ações do Ator ajuda a otimizar decisões de trading de forma eficiente e a aumentar a robustez dos modelos nas condições dos mercados financeiros.
preview
Otimização de recifes de coral — Coral Reefs Optimization (CRO)

Otimização de recifes de coral — Coral Reefs Optimization (CRO)

Neste artigo é apresentada uma análise abrangente do algoritmo de otimização de recifes de coral (CRO), um método meta-heurístico inspirado nos processos biológicos de formação e desenvolvimento de recifes de coral. Ele modela aspectos-chave da evolução dos corais: reprodução externa e interna, fixação de larvas, reprodução assexuada e competição por espaço limitado no recife. É dada atenção especial à versão aprimorada do algoritmo.
preview
Trading por algoritmo: IA e seu caminho para os topos dourados

Trading por algoritmo: IA e seu caminho para os topos dourados

Neste artigo, é demonstrado um método de criação de estratégias de trading para o ouro usando aprendizado de máquina. Ao analisar o método proposto para a previsão de séries temporais sob diferentes ângulos, é possível identificar suas vantagens e desvantagens em comparação com outras formas de criação de sistemas de trading baseadas somente na análise e previsão de séries temporais financeiras.
preview
Análise angular dos movimentos de preço: um modelo híbrido de previsão dos mercados financeiros

Análise angular dos movimentos de preço: um modelo híbrido de previsão dos mercados financeiros

O que é análise angular dos mercados financeiros? Como usar os ângulos de movimento de preço e o aprendizado de máquina para prever com precisão de 67? Como combinar um modelo de regressão e um modelo de classificação com características angulares e obter um algoritmo funcional? O que Gann tem a ver com isso? Por que os ângulos de movimento do preço são bons indicadores para o aprendizado de máquina?
preview
Definição de sobrecompra e sobrevenda segundo a teoria do caos

Definição de sobrecompra e sobrevenda segundo a teoria do caos

Determinamos as zonas de sobrecompra e sobrevenda do mercado a partir da teoria do caos: uma integração dos princípios da teoria do caos, da geometria fractal e das redes neurais para prever os mercados financeiros. O estudo demonstra o uso do expoente de Lyapunov como medida da natureza caótica do mercado e a adaptação dinâmica dos sinais de trade. A metodologia inclui um algoritmo de geração de ruído fractal, ativação tangencial hiperbólica e otimização com momento.
preview
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)

Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)

O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.
preview
Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)

Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)

O artigo descreve uma abordagem inovadora no campo da otimização, que combina a competição espacial entre soluções com o estreitamento adaptativo do espaço de busca, tornando o Battle Royale Optimizer uma ferramenta promissora para análise financeira.
preview
Aprendizado de máquina em trading direcional de tendência com o exemplo do ouro

Aprendizado de máquina em trading direcional de tendência com o exemplo do ouro

Este artigo discute uma abordagem de trading apenas em uma direção escolhida (compra ou venda). Para isso, é utilizada a técnica de inferência causal e aprendizado de máquina.
preview
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)

Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)

Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
preview
Métodos de conjunto para aprimorar previsões numéricas em MQL5

Métodos de conjunto para aprimorar previsões numéricas em MQL5

Neste artigo, apresentamos a implementação de vários métodos de aprendizagem de conjunto em MQL5 e examinamos sua eficácia em diferentes cenários.
preview
Otimização com neuroboids — Neuroboids Optimization AlgorithmN 2 (NOA2)

Otimização com neuroboids — Neuroboids Optimization AlgorithmN 2 (NOA2)

O novo algoritmo autoral de otimização NOA2 (Neuroboids Optimization Algorithm 2) combina os princípios da inteligência de enxame com controle baseado em redes neurais. O NOA2 funde a mecânica do comportamento coletivo dos neuroboids com um sistema neural adaptativo, que permite aos agentes ajustar seu comportamento de forma autônoma durante o processo de busca pelo ótimo. O algoritmo está em fase ativa de desenvolvimento e demonstra potencial para resolver tarefas complexas de otimização.
preview
Desenvolvimento de estratégias de trading de tendência baseadas em aprendizado de máquina

Desenvolvimento de estratégias de trading de tendência baseadas em aprendizado de máquina

Neste artigo é proposto um método original para o desenvolvimento de estratégias de tendência. Você aprenderá como é possível fazer a anotação dos exemplos de treinamento e treinar classificadores com base neles. O resultado final são sistemas de trading prontos para uso, operando sob o controle do terminal MetaTrader 5.
preview
Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)

Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)

Este artigo apresenta o algoritmo de otimização de força central (CFO), inspirado nas leis da gravitação. É explorado como os princípios da atração física podem resolver problemas de otimização, onde soluções mais pesadas atraem seus análogos menos bem-sucedidos.
preview
Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)

Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)

Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.
preview
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)

Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)

Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.
preview
Aplicação da teoria dos jogos em algoritmos de trading

Aplicação da teoria dos jogos em algoritmos de trading

Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
preview
Percepções de Negociação por Meio do Volume: Confirmação de Tendência

Percepções de Negociação por Meio do Volume: Confirmação de Tendência

A Técnica Aprimorada de Confirmação de Tendência combina ação de preço, análise de volume e aprendizado de máquina para identificar movimentos genuínos do mercado. Ela requer tanto rompimentos de preço quanto aumentos de volume (50% acima da média) para validação da negociação, enquanto utiliza uma rede neural LSTM para confirmação adicional. O sistema emprega dimensionamento de posição baseado em ATR e gerenciamento dinâmico de risco, tornando-o adaptável a várias condições de mercado, ao mesmo tempo em que filtra sinais falsos.
preview
Arbitragem de swap no Forex: Montando uma carteira sintética e criando um fluxo estável de swaps

Arbitragem de swap no Forex: Montando uma carteira sintética e criando um fluxo estável de swaps

Quer saber como lucrar com a diferença entre taxas de juros? Neste artigo, veremos como usar a arbitragem de swap no Forex para obter uma renda estável todas as noites, criando uma carteira resistente às oscilações do mercado.
preview
Arbitragem no trading Forex: Análise dos movimentos de moedas sintéticas e seu retorno à média

Arbitragem no trading Forex: Análise dos movimentos de moedas sintéticas e seu retorno à média

Neste artigo, tentaremos analisar os movimentos das moedas sintéticas na integração Python + MQL5 e entender até que ponto a arbitragem ainda é viável no Forex atualmente. Além disso: apresentaremos um código pronto em Python para análise de moedas sintéticas e explicaremos em detalhes o que são essas moedas no mercado Forex.
preview
Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)

Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)

Trata-se de uma nova metaheurística de otimização bioinspirada e autoral, denominada NOA (Neuroboids Optimization Algorithm), que combina princípios de inteligência coletiva e redes neurais. Ao contrário dos métodos clássicos, o algoritmo utiliza uma população de "neuroboides" autoaprendizes, cada um com sua própria rede neural, que adapta a estratégia de busca em tempo real. O artigo em questão apresenta a arquitetura do algoritmo, os mecanismos de autoaprendizado dos agentes e as perspectivas de aplicação dessa abordagem híbrida em tarefas complexas de otimização.
preview
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)

Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)

Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.
preview
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)

Redes neurais no trading: Dupla clusterização de séries temporais (DUET)

O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.
preview
Gerente de risco profissional remoto para Forex em Python

Gerente de risco profissional remoto para Forex em Python

Criamos um gerente de risco profissional remoto para Forex em Python e o implantamos em um servidor, passo a passo. Ao longo do artigo, veremos como gerenciar riscos no Forex de maneira programada e como evitar a perda total do depósito.