Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Seleção de características e redução de dimensionalidade com Análise de Componentes Principais (PCA)

Seleção de características e redução de dimensionalidade com Análise de Componentes Principais (PCA)

O artigo analisa a implementação de um algoritmo modificado de análise de componentes de seleção direta, inspirado nas pesquisas apresentadas no livro de Luca Puggini e Sean McLoone "Análise de Componentes de Seleção Direta: algoritmos e aplicações".
preview
Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA

Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA

O SARSA (State-Action-Reward-State-Action, estado–ação–recompensa–estado–ação) é outro algoritmo que pode ser utilizado na implementação de aprendizado por reforço. Vamos analisar como esse algoritmo pode ser implementado como um modelo independente (e não apenas como um mecanismo de aprendizado) em Expert Advisors gerados no Wizard, de forma semelhante ao que fizemos nos casos de Q-learning e DQN.
preview
Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)

Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)

Na discussão de hoje, examinamos a estratégia de análise de múltiplos time-frames para descobrir em qual time-frame nosso modelo de IA apresenta melhor desempenho. Nossa análise nos levou a concluir que os time-frames Mensal e de 1 Hora produzem modelos com taxas de erro relativamente baixas no par EURUSD. Usamos isso a nosso favor e criamos um algoritmo de negociação que faz previsões de IA no time-frame Mensal e executa suas negociações no time-frame de 1 Hora.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks

Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks

O Deep-Q-Network é um algoritmo de aprendizado por reforço que utiliza redes neurais para projetar (estimar) o próximo valor-Q e a ação ideal durante o processo de treinamento de um módulo de aprendizado de máquina. Já consideramos um algoritmo alternativo de aprendizado por reforço, o Q-Learning. Este artigo, portanto, apresenta outro exemplo de como um MLP treinado com aprendizado por reforço pode ser usado dentro de uma classe de sinal personalizada.
preview
Integração do MQL5 com pacotes de processamento de dados (Parte 3): Visualização de dados aprimorada

Integração do MQL5 com pacotes de processamento de dados (Parte 3): Visualização de dados aprimorada

Neste artigo, vamos explorar a visualização de dados avançada, incluindo recursos como interatividade, dados em camadas e elementos dinâmicos, que permitem aos traders examinar tendências, padrões e correlações com mais eficácia.
preview
Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)

Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)

Neste artigo, exploramos a integração dinâmica das Redes Neurais Convolucionais (CNNs) e das Redes Neurais Recorrentes (RNNs) na previsão do mercado de ações. Aproveitando a capacidade das CNNs de extrair padrões e a proficiência das RNNs em lidar com dados sequenciais. Vamos ver como essa combinação poderosa pode aumentar a precisão e eficiência dos algoritmos de negociação.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Expert Advisor de Múltiplas Estratégias (I)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Expert Advisor de Múltiplas Estratégias (I)

Hoje, vamos explorar as possibilidades de incorporar múltiplas estratégias em um Expert Advisor (EA) usando MQL5. Os Expert Advisors oferecem capacidades mais amplas do que apenas indicadores e scripts, permitindo abordagens de negociação mais sofisticadas que podem se adaptar às mudanças das condições do mercado. Confira mais na discussão deste artigo.
preview
Repensando estratégias clássicas (Parte X): A IA pode operar o MACD?

Repensando estratégias clássicas (Parte X): A IA pode operar o MACD?

Junte-se a nós em uma análise empírica do indicador MACD para verificar se a aplicação da inteligência artificial à estratégia que inclui esse indicador pode aumentar a precisão da previsão do par EURUSD. Avaliamos simultaneamente se é mais fácil prever o próprio indicador do que o preço, bem como se o valor do indicador permite prever os níveis futuros de preço. Forneceremos as informações necessárias para que você decida se vale a pena investir seu tempo integrando o MACD às suas estratégias de trading com o uso de inteligência artificial.
preview
Exemplo de novo Indicador e LSTM Condicional

Exemplo de novo Indicador e LSTM Condicional

Este artigo explora o desenvolvimento de um Expert Advisor (EA) para trading automatizado que combina análise técnica com previsões de deep learning.
preview
Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD

Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD

Na discussão de hoje, utilizamos dados alternativos diários do Federal Reserve de St. Louis sobre o Índice Amplo do Dólar dos EUA e um conjunto de outros indicadores macroeconômicos para prever a taxa de câmbio futura do EURUSD. Infelizmente, embora os dados aparentem ter uma correlação quase perfeita, não conseguimos obter ganhos materiais em nossa acurácia de modelo, o que pode nos indicar que os investidores talvez estejam melhores usando apenas as cotações normais do mercado.
preview
Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de uma estratégia de trading com LLM (II) - Configuração do LoRA

Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de uma estratégia de trading com LLM (II) - Configuração do LoRA

Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica. Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
preview
Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading

Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading

Os modelos de inteligência artificial CatBoost ganharam enorme popularidade na comunidade de aprendizado de máquina graças à sua precisão nas previsões, eficiência e resistência a conjuntos de dados fragmentados e complexos. Este artigo trata de como usar esses modelos no mercado Forex.
preview
Codificação ordinal de variáveis nominais

Codificação ordinal de variáveis nominais

Neste artigo, discutiremos e demonstraremos como transformar variáveis nominais em formatos numéricos adequados para algoritmos de aprendizado de máquina, utilizando tanto Python quanto MQL5.
preview
Expert Advisor Auto-otimizável com MQL5 e Python (Parte IV): Empilhamento de Modelos

Expert Advisor Auto-otimizável com MQL5 e Python (Parte IV): Empilhamento de Modelos

Hoje, vamos demonstrar como você pode construir aplicações de trading com IA capazes de aprender com os próprios erros. Vamos demonstrar uma técnica conhecida como stacking (empilhamento), na qual usamos 2 modelos para fazer 1 previsão. O primeiro modelo é tipicamente um aprendiz mais fraco, e o segundo modelo normalmente é um modelo mais poderoso que aprende com os resíduos do nosso aprendiz mais fraco. Nosso objetivo é criar um conjunto de modelos (ensemble), na esperança de alcançar maior acurácia.
preview
Ganhe Vantagem em Qualquer Mercado (Parte IV): Índices de Volatilidade do Euro e do Ouro da CBOE

Ganhe Vantagem em Qualquer Mercado (Parte IV): Índices de Volatilidade do Euro e do Ouro da CBOE

Vamos analisar dados alternativos selecionados pela Chicago Board Of Options Exchange (CBOE) para melhorar a precisão de nossas redes neurais profundas ao prever o símbolo XAUEUR.
preview
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Descubra o inovador framework Chimera, um modelo bidimensional do espaço de estados que utiliza redes neurais para analisar séries temporais multidimensionais. Esse método oferece alta precisão com baixo custo computacional, superando abordagens tradicionais e arquiteturas do tipo Transformer.
preview
Algoritmo de busca circular — Circle Search Algorithm (CSA)

Algoritmo de busca circular — Circle Search Algorithm (CSA)

Este artigo apresenta um novo algoritmo metaheurístico de otimização, o CSA (Circle Search Algorithm), baseado nas propriedades geométricas do círculo. O algoritmo utiliza o princípio de movimentação de pontos ao longo das tangentes para encontrar a solução ideal, combinando fases de diversificação global e intensificação local.
preview
Fibonacci no Forex (Parte I): Testando relações entre preço e tempo

Fibonacci no Forex (Parte I): Testando relações entre preço e tempo

Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...
preview
Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.
preview
Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT

Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT

Seguimos com as tentativas de decifrar os movimentos dos preços... Que tal uma análise linguística do "vocabulário do mercado", que obtemos ao converter o código binário do preço para BIP39? Neste artigo, vamos nos aprofundar em uma abordagem inovadora para a análise de dados de mercado e explorar como os métodos modernos de processamento de linguagem natural podem ser aplicados ao idioma do mercado.
preview
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.
preview
Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)

Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)

O algoritmo Royal Flush Optimization, criado pelo autor, propõe uma nova forma de abordar problemas de otimização, substituindo a codificação binária clássica dos algoritmos genéticos por uma abordagem setorial, inspirada nos princípios do pôquer. O RFO demonstra como a simplificação de princípios fundamentais pode levar à criação de um método de otimização eficaz e prático. O artigo apresenta uma análise detalhada do algoritmo e os resultados dos testes realizados.
preview
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
preview
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.
preview
Busca dialética — Dialectic Search (DA)

Busca dialética — Dialectic Search (DA)

Apresentamos o Algoritmo Dialético (DA), um novo método de otimização global inspirado no conceito filosófico de dialética. O algoritmo utiliza uma divisão única da população em pensadores especulativos e práticos. Os testes mostram um desempenho impressionante de até 98% em tarefas de baixa dimensionalidade e uma eficácia geral de 57,95%. Este artigo explica esses números e apresenta uma descrição detalhada do algoritmo e os resultados dos experimentos em diferentes tipos de funções.
preview
Neurônio biológico para previsão de séries temporais financeiras

Neurônio biológico para previsão de séries temporais financeiras

Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?
preview
Indicador de previsão de volatilidade usando Python

Indicador de previsão de volatilidade usando Python

Vamos prever a volatilidade extrema futura com ajuda da classificação binária. Criamos um indicador de previsão de volatilidade extrema com uso de aprendizado de máquina.
preview
Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)

Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)

Meu algoritmo original. Neste artigo é apresentado o Algoritmo da Viagem Evolutiva no Tempo (TETA), inspirado no conceito de universos paralelos e fluxos temporais. A ideia central do algoritmo é que, embora a viagem no tempo no sentido convencional seja impossível, podemos escolher uma sequência de eventos que leva a diferentes realidades.
preview
Algoritmo evolutivo de trading com aprendizado por reforço e extinção de estratégias não lucrativas (ETARE)

Algoritmo evolutivo de trading com aprendizado por reforço e extinção de estratégias não lucrativas (ETARE)

Apresentamos um algoritmo de trading inovador que combina algoritmos evolutivos com aprendizado profundo por reforço para operar no mercado Forex. O algoritmo utiliza um mecanismo de extinção das estratégias ineficientes, com o objetivo de otimizar a estratégia de negociação.
preview
Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.
preview
Usando PSAR, Heiken Ashi e Aprendizado Profundo Juntos para Operações de Trading

Usando PSAR, Heiken Ashi e Aprendizado Profundo Juntos para Operações de Trading

Este projeto explora a fusão entre aprendizado profundo e análise técnica para testar estratégias de trading no mercado de câmbio (forex). Um script em Python é usado para experimentação rápida, utilizando um modelo ONNX juntamente com indicadores tradicionais como PSAR, SMA e RSI para prever movimentos do par EUR/USD. Um script em MetaTrader 5 então leva essa estratégia para um ambiente ao vivo, usando dados históricos e análise técnica para tomar decisões de trading mais informadas. Os resultados do backtesting indicam uma abordagem cautelosa, porém consistente, com foco em gestão de risco e crescimento estável em vez da busca agressiva por lucros.
preview
Métodos de discretização dos movimentos de preço em Python

Métodos de discretização dos movimentos de preço em Python

Vamos explorar métodos de discretização de preços com Python + MQL5. Neste artigo, compartilho minha experiência prática no desenvolvimento de uma biblioteca em Python que implementa uma variedade de abordagens para formar barras, desde as clássicas Volume e Range bars até métodos mais exóticos como Renko e Kagi. Barras, candles de três linhas rompidas, range bars — qual é a sua estatística? De que outras formas podemos representar os preços de maneira discreta?
preview
Exemplo de CNA (Análise de Rede de Causalidade), SMOC (Controle Otimizado com Modelo Estocástico) e Teoria dos Jogos de Nash com Aprendizado Profundo

Exemplo de CNA (Análise de Rede de Causalidade), SMOC (Controle Otimizado com Modelo Estocástico) e Teoria dos Jogos de Nash com Aprendizado Profundo

Adicionaremos Aprendizado Profundo a esses três exemplos que foram publicados em artigos anteriores e compararemos os resultados com os anteriores. O objetivo é aprender como adicionar Deep Learning a outros EAs.
preview
Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)

Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)

Apresento o framework MacroHFT, que aplica aprendizado por reforço contextual com memória para melhorar as decisões em trading de alta frequência de criptomoedas, utilizando dados macroeconômicos e agentes adaptativos.
preview
Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)

Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)

Neste artigo, vamos analisar um novo algoritmo populacional de otimização, o CPA (Cyclic Parthenogenesis Algorithm), inspirado na estratégia reprodutiva única dos pulgões. O algoritmo combina dois mecanismos de reprodução — partenogênese e sexual — e utiliza uma estrutura de colônia populacional com possibilidade de migração entre colônias. As principais características do algoritmo são a alternância adaptativa entre diferentes estratégias reprodutivas e o sistema de troca de informação entre colônias por meio do mecanismo de voo.
preview
Sistemas neurossimbólicos no algotrading: Unindo regras simbólicas e redes neurais

Sistemas neurossimbólicos no algotrading: Unindo regras simbólicas e redes neurais

Este artigo fala sobre a experiência de desenvolver um sistema de negociação híbrido que combina análise técnica clássica com redes neurais. O autor destrincha a arquitetura do sistema, desde a análise básica de padrões e estrutura da rede neural até os mecanismos de tomada de decisão, compartilhando código real e observações práticas.
preview
Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)

Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)

Continuamos a implementação das abordagens propostas pelos autores do framework FinCon. O FinCon é um sistema multiagente baseado em grandes modelos de linguagem (LLM). Hoje vamos implementar os módulos necessários e realizar testes abrangentes do modelo com dados históricos reais.
preview
Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Apresentamos o framework FinCon, que é um sistema multiagente baseado em grandes modelos de linguagem (LLM). O framework utiliza reforço verbal conceitual para melhorar a tomada de decisões e o gerenciamento de riscos, permitindo realizar diversas tarefas financeiras de forma eficiente.
preview
Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?

Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?

Este trabalho apresenta uma análise da interação entre diferentes funções de ativação e algoritmos de otimização no contexto do treinamento de redes neurais. A atenção principal está voltada para a comparação entre o ADAM clássico e sua versão populacional ao lidar com uma ampla gama de funções de ativação, incluindo as funções oscilatórias ACON e Snake. Mediante uma arquitetura MLP minimalista (1-1-1) e um único exemplo de treino, isola-se a influência das funções de ativação no processo de otimização, eliminando interferências de outros fatores. Propomos um método de controle dos pesos da rede por meio dos limites das funções de ativação e um mecanismo de reflexão de pesos, permitindo evitar problemas de saturação e estagnação no aprendizado.
preview
Computação quântica e trading: Um novo olhar sobre as previsões de preços

Computação quântica e trading: Um novo olhar sobre as previsões de preços

Este artigo analisa uma abordagem inovadora para prever os movimentos de preços nos mercados financeiros mediante computação quântica. O foco principal está na aplicação do algoritmo de estimativa de fase quântica (QPE) para buscar precursores de padrões de preços, o que permite acelerar significativamente o processo de análise de dados de mercado.