Automatizando Estratégias de Trading em MQL5 (Parte 5): Desenvolvendo a Estratégia Adaptive Crossover RSI Trading Suite
Neste artigo, desenvolvemos o Sistema Adaptive Crossover RSI Trading Suite, que utiliza cruzamentos de médias móveis de 14 e 50 períodos para geração de sinais, confirmados por um filtro de RSI de 14 períodos. O sistema inclui um filtro de dias de negociação, setas de sinal com anotações e um painel em tempo real para monitoramento. Essa abordagem garante precisão e adaptabilidade no trading automatizado.
Algoritmo do camelo — Camel Algorithm (CA)
O Algoritmo do camelo, desenvolvido em 2016, modela o comportamento dos camelos no deserto para resolver problemas de otimização, levando em conta fatores de temperatura, reservas e resistência. Neste trabalho é apresentada ainda uma versão modificada dele (CAm), com melhorias-chave, como a aplicação da distribuição gaussiana na geração de soluções e a otimização dos parâmetros do efeito de oásis.
Automatizando Estratégias de Trading em MQL5 (Parte 4): Construindo um Sistema de Recuperação por Zonas em Múltiplos Níveis
Neste artigo, desenvolvemos um Sistema de Recuperação por Zonas em Múltiplos Níveis em MQL5 que utiliza o RSI para gerar sinais de negociação. Cada instância de sinal é adicionada dinamicamente a uma estrutura de array, permitindo que o sistema gerencie múltiplos sinais simultaneamente dentro da lógica de Zone Recovery. Por meio dessa abordagem, demonstramos como lidar de forma eficaz com cenários complexos de gerenciamento de trades, mantendo ao mesmo tempo um design de código escalável e robusto.
Integrar seu próprio LLM em EA (Parte 5): Desenvolver e testar estratégia de trading com LLMs (IV) — Testar estratégia de trading
Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e, em seguida, aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
A Estratégia de Negociação do Inverse Fair Value Gap
Um inverse fair value gap (IFVG) ocorre quando o preço retorna a um fair value gap previamente identificado e, em vez de apresentar a reação esperada de suporte ou resistência, falha em respeitá-lo. Essa falha pode sinalizar uma possível mudança na direção do mercado e oferecer uma vantagem contrária de negociação. Neste artigo, vou apresentar minha abordagem desenvolvida por mim para quantificar e utilizar o inverse fair value gap como uma estratégia para expert advisors do MetaTrader 5.
Modelos ocultos de Markov em sistemas de trading com aprendizado de máquina
Os modelos ocultos de Markov (HMM) representam uma classe poderosa de modelos probabilísticos, destinados à análise de dados sequenciais, nos quais os eventos observáveis dependem de alguma sequência de estados não observáveis (ocultos), que formam um processo de Markov. As principais suposições dos HMM incluem a propriedade de Markov para os estados ocultos, o que significa que a probabilidade de transição para o próximo estado depende apenas do estado atual, e a independência das observações, desde que o estado oculto atual seja conhecido.
Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)
Um novo método metaheurístico baseado na abordagem fractal de divisão do espaço de busca para resolver tarefas de otimização. O algoritmo identifica e divide sequencialmente áreas promissoras, criando uma estrutura fractal auto-semelhante que concentra os recursos computacionais nos trechos mais promissores. Um mecanismo exclusivo de mutação, direcionado para as melhores soluções, garante um equilíbrio ideal entre diversificação e intensificação do espaço de busca, aumentando significativamente a eficiência do algoritmo.
Implementação do mecanismo de breakeven em MQL5 (Parte 1): Classe base e modo de breakeven por pontos fixos
Neste artigo, analisamos a aplicação do mecanismo de breakeven (ponto de equilíbrio) em estratégias automatizadas na linguagem MQL5. Começaremos com uma explicação simples do que é o modo de breakeven, como ele é implementado e quais são suas possíveis variações. Em seguida, essa funcionalidade será integrada ao EA Order Blocks, criado por nós no último artigo sobre gerenciamento de riscos. Para avaliar a eficácia, faremos dois backtests sob determinadas condições: um com a aplicação do mecanismo de breakeven e outro, sem.
Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação
Continuação do estudo do algoritmo de otimização caótica. A segunda parte do artigo é dedicada aos aspectos práticos da implementação do algoritmo, ao seu teste e às conclusões.
Desenvolvimento do Toolkit de Análise de Price Action (Parte 8): Painel de Métricas
Como um dos mais poderosos toolkits de análise de Price Action, o Painel de Métricas foi projetado para otimizar a análise de mercado, fornecendo instantaneamente métricas essenciais do mercado com apenas um clique de botão. Cada botão exerce uma função específica, seja para analisar tendências de máxima/mínima, volume ou outros indicadores-chave. Esta ferramenta entrega dados precisos e em tempo real exatamente quando você mais precisa. Vamos explorar mais profundamente seus recursos neste artigo.
Desenvolvendo um Expert Advisor de Breakout Baseado em Eventos de Notícias do Calendário em MQL5
A volatilidade tende a atingir picos em torno de eventos de notícias de alto impacto, criando oportunidades significativas de breakout. Neste artigo, iremos delinear o processo de implementação de uma estratégia de breakout baseada em calendário. Abordaremos tudo, desde a criação de uma classe para interpretar e armazenar dados do calendário, o desenvolvimento de backtests realistas utilizando esses dados e, por fim, a implementação do código de execução para negociação ao vivo.
Gerenciamento de riscos (Parte 5): Integração do sistema de gerenciamento de riscos ao EA
Neste artigo, implementaremos o sistema de gerenciamento de risco desenvolvido em publicações anteriores e adicionaremos o indicador Order Blocks apresentado em outros artigos. Além disso, será realizado um backtest para comparar os resultados com a aplicação do sistema de gerenciamento de risco e para avaliar o impacto do risco dinâmico.
Desenvolvimento de um sistema de monitoramento de entradas de swing (EA)
À medida que o ano se aproxima do fim, traders de longo prazo costumam refletir sobre o histórico do mercado para analisar seu comportamento e tendências, visando projetar potenciais movimentos futuros. Neste artigo, exploraremos o desenvolvimento de um Expert Advisor (EA) de monitoramento de entradas de longo prazo usando MQL5. O objetivo é abordar o desafio das oportunidades de negociação de longo prazo perdidas devido ao trading manual e à ausência de sistemas automatizados de monitoramento. Usaremos um dos pares mais negociados como exemplo para estruturar e desenvolver nossa solução de forma eficaz.
Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"
Neste artigo, automatizaremos o padrão "Cabeça e Ombros" em MQL5. Analisaremos sua arquitetura, implementaremos um EA para sua detecção e negociação, e testaremos os resultados no histórico. Esse processo revela um algoritmo de negociação prático, que pode ser aprimorado.
Gerenciamento de riscos (Parte 4): Conclusão dos métodos-chave da classe
Este artigo é a quarta parte da nossa série sobre gerenciamento de riscos em MQL5, onde continuamos a explorar métodos avançados de proteção e otimização de estratégias de negociação. Após termos estabelecido as bases importantes nas partes anteriores, agora focaremos em finalizar todos os métodos que ficaram pendentes na terceira parte, incluindo as funções responsáveis por verificar o atingimento de determinados níveis de lucro ou prejuízo. Além disso, o artigo introduz novos eventos-chave que garantem um controle mais preciso e flexível.
Automatizando Estratégias de Negociação em MQL5 (Parte 3): O Sistema Zone Recovery RSI para Gestão Dinâmica de Operações
Neste artigo, criamos um Sistema EA Zone Recovery RSI em MQL5, utilizando sinais de RSI para acionar operações e uma estratégia de recuperação para gerenciar perdas. Implementamos uma classe "ZoneRecovery" para automatizar as entradas de operações, a lógica de recuperação e o gerenciamento de posições. O artigo conclui com insights de backtesting para otimizar a performance e aprimorar a eficácia do EA.
Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica
Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
Desenvolvimento de sistemas de trading avançados ICT: Implementação de sinais no indicador Order Blocks
Neste artigo você vai aprender como desenvolver um indicador Order Blocks baseado no volume do livro de ofertas (profundidade de mercado) e otimizá-lo usando buffers para melhorar a precisão. Com isso, concluímos a etapa atual do projeto e nos preparamos para as próximas, nas quais será implementada uma classe de gerenciamento de risco e um robô de negociação que utilizará os sinais gerados pelo indicador.
Gerenciamento de riscos (Parte 1): Fundamentos da construção de uma classe de gerenciamento de riscos
Neste artigo, analisaremos os fundamentos do gerenciamento de riscos no trading e veremos como criar nossas primeiras funções para calcular o lote adequado para uma operação, assim como o stop loss. Além disso, examinaremos em detalhes como essas funções funcionam, explicando cada etapa. Nosso objetivo é fornecer uma compreensão clara de como aplicar esses conceitos na negociação automática. No final, aplicaremos tudo na prática, criando um script simples com o arquivo incluível que desenvolveremos.
Como construir e otimizar um sistema de trading baseado em volume (Chaikin Money Flow - CMF)
Neste artigo, forneceremos um indicador baseado em volume, o Chaikin Money Flow (CMF), após identificar como ele pode ser construído, calculado e utilizado. Vamos compreender como construir um indicador personalizado. Compartilharemos algumas estratégias simples que podem ser usadas e, em seguida, as testaremos para entender qual delas é melhor.
Automatizando Estratégias de Trading em MQL5 (Parte 2): O Sistema Kumo Breakout com Ichimoku e Awesome Oscillator
Neste artigo, criamos um Expert Advisor (EA) que automatiza a estratégia Kumo Breakout utilizando o indicador Ichimoku Kinko Hyo e o Awesome Oscillator. Percorremos o processo de inicialização dos identificadores de indicadores, detecção das condições de breakout e codificação das entradas e saídas automatizadas de trades. Além disso, implementamos trailing stops e lógica de gerenciamento de posição para aprimorar o desempenho e a adaptabilidade do EA às condições de mercado.
Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning
Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e então aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
Estratégia de trading "Captura de Liquidez" (Liquidity Grab)
A estratégia de captura de liquidez é um componente-chave do Smart Money Concepts (SMC), que visa identificar e aproveitar as ações dos participantes institucionais no mercado. Ela envolve mirar áreas de alta liquidez, como zonas de suporte ou resistência, onde ordens de grande volume podem provocar um movimento de preço antes que o mercado retome sua tendência. Este artigo explica em detalhes o conceito de captura de liquidez e descreve o processo de desenvolvimento de um EA para a estratégia de captura de liquidez em MQL5.
Implementação do algoritmo criptográfico SHA-256 do zero em MQL5
Criar integrações com bolsas de criptomoedas sem arquivos DLL foi, por muito tempo, uma tarefa complexa, mas esta solução fornece uma base completa para conexão direta ao mercado.
Modelos ocultos de Markov para previsão de volatilidade com consideração de tendência
Os modelos ocultos de Markov (HMM) são uma poderosa ferramenta estatística que permite identificar estados ocultos do mercado com base na análise de movimentos observáveis dos preços. No trading, os HMM permitem melhorar a previsão da volatilidade e são aplicados no desenvolvimento de estratégias de tendência, modelando as mudanças nos regimes de mercado. Neste artigo, apresentaremos um processo passo a passo para o desenvolvimento de uma estratégia de seguimento de tendência que utiliza HMM como filtro para previsão de volatilidade.
Otimização de recifes de coral — Coral Reefs Optimization (CRO)
Neste artigo é apresentada uma análise abrangente do algoritmo de otimização de recifes de coral (CRO), um método meta-heurístico inspirado nos processos biológicos de formação e desenvolvimento de recifes de coral. Ele modela aspectos-chave da evolução dos corais: reprodução externa e interna, fixação de larvas, reprodução assexuada e competição por espaço limitado no recife. É dada atenção especial à versão aprimorada do algoritmo.
Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 9): Expert Advisor de Múltiplas Estratégias (III)
Bem-vindo à terceira parte da nossa série sobre tendências! Hoje, vamos nos aprofundar no uso de divergência como estratégia para identificar pontos de entrada ideais dentro da tendência diária predominante. Também apresentaremos um mecanismo personalizado de proteção de lucro, semelhante a um trailing stop-loss, mas com melhorias exclusivas. Além disso, vamos atualizar o Trend Constraint Expert para uma versão mais avançada, incorporando uma nova condição de execução de trade para complementar as já existentes. À medida que avançamos, continuaremos explorando a aplicação prática do MQL5 no desenvolvimento algorítmico, fornecendo a você percepções mais detalhadas e técnicas acionáveis.
Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)
O artigo descreve uma abordagem inovadora no campo da otimização, que combina a competição espacial entre soluções com o estreitamento adaptativo do espaço de busca, tornando o Battle Royale Optimizer uma ferramenta promissora para análise financeira.
Expert Advisor de scalping Ilan 3.0 AI com aprendizado de máquina
Lembra do EA Ilan 1.6 Dynamic? Vamos tentar aprimorá-lo com aprendizado de máquina! Vamos reviver esse antigo projeto neste artigo e adicionar aprendizado de máquina com uma tabela Q. Passo a passo.
Portfolio Risk Model using Kelly Criterion and Monte Carlo Simulation
Por décadas, traders vêm utilizando a fórmula do Critério de Kelly para determinar a proporção ideal de capital a ser alocada em um investimento ou aposta, a fim de maximizar o crescimento de longo prazo enquanto minimiza o risco de ruína. No entanto, seguir cegamente o Critério de Kelly utilizando o resultado de um único backtest costuma ser perigoso para traders individuais, pois, na negociação ao vivo, a vantagem de trading diminui com o tempo, e o desempenho passado não é garantia de resultado futuro. Neste artigo, apresentarei uma abordagem realista para aplicar o Critério de Kelly para alocação de risco de um ou mais EAs no MetaTrader 5, incorporando resultados de simulação de Monte Carlo provenientes do Python.
Criando um Painel de Administração de Trading em MQL5 (Parte VIII): Painel de Análises
Hoje, aprofundamos a incorporação de métricas de trading úteis dentro de uma janela especializada integrada ao EA do Painel de Administração. Esta discussão foca na implementação em MQL5 para desenvolver um Painel de Análises e destaca o valor dos dados que ele fornece aos administradores de trading. O impacto é amplamente educacional, pois lições valiosas são extraídas do processo de desenvolvimento, beneficiando tanto desenvolvedores iniciantes quanto experientes. Este recurso demonstra as oportunidades ilimitadas que esta série de desenvolvimento oferece ao equipar gestores de operações com ferramentas avançadas de software. Além disso, exploraremos a implementação das classes PieChart e ChartCanvas como parte da expansão contínua das capacidades do painel de Administração de Trading.
Negociando com o Calendário Econômico do MQL5 (Parte 5): Aprimorando o Painel com Controles Responsivos e Botões de Filtro
Neste artigo, criamos botões para filtros de pares de moedas, níveis de importância, filtros de tempo e uma opção de cancelamento para melhorar o controle do painel. Esses botões são programados para responder dinamicamente às ações do usuário, permitindo uma interação contínua. Também automatizamos seu comportamento para refletir mudanças em tempo real no painel. Isso aprimora a funcionalidade geral, a mobilidade e a responsividade do painel.
Otimização com neuroboids — Neuroboids Optimization AlgorithmN 2 (NOA2)
O novo algoritmo autoral de otimização NOA2 (Neuroboids Optimization Algorithm 2) combina os princípios da inteligência de enxame com controle baseado em redes neurais. O NOA2 funde a mecânica do comportamento coletivo dos neuroboids com um sistema neural adaptativo, que permite aos agentes ajustar seu comportamento de forma autônoma durante o processo de busca pelo ótimo. O algoritmo está em fase ativa de desenvolvimento e demonstra potencial para resolver tarefas complexas de otimização.
Desenvolvimento de estratégias de trading de tendência baseadas em aprendizado de máquina
Neste artigo é proposto um método original para o desenvolvimento de estratégias de tendência. Você aprenderá como é possível fazer a anotação dos exemplos de treinamento e treinar classificadores com base neles. O resultado final são sistemas de trading prontos para uso, operando sob o controle do terminal MetaTrader 5.
Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)
Este artigo apresenta o algoritmo de otimização de força central (CFO), inspirado nas leis da gravitação. É explorado como os princípios da atração física podem resolver problemas de otimização, onde soluções mais pesadas atraem seus análogos menos bem-sucedidos.
Introdução ao MQL5 (Parte 10): Um Guia para Iniciantes sobre como Trabalhar com Indicadores Embutidos no MQL5
Este artigo introduz o trabalho com indicadores embutidos no MQL5, com foco na criação de um Expert Advisor (EA) baseado em RSI usando uma abordagem orientada a projeto. Você aprenderá a recuperar e utilizar valores de RSI, lidar com varreduras de liquidez e aprimorar a visualização de trades usando objetos no gráfico. Além disso, o artigo enfatiza a gestão eficaz de risco, incluindo a definição de risco baseado em porcentagem, implementação de relações risco-retorno e aplicação de modificações de risco para garantir lucros.
Desenvolvendo um EA multimoeda (Parte 25): Conectando uma nova estratégia (II)
Neste artigo, continuaremos a conectar uma nova estratégia ao sistema de otimização automática já criado. Vamos ver quais mudanças devem ser feitas no EA responsável pela criação do projeto de otimização e nos EAs das segunda e terceira etapas.
Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)
Trata-se de uma nova metaheurística de otimização bioinspirada e autoral, denominada NOA (Neuroboids Optimization Algorithm), que combina princípios de inteligência coletiva e redes neurais. Ao contrário dos métodos clássicos, o algoritmo utiliza uma população de "neuroboides" autoaprendizes, cada um com sua própria rede neural, que adapta a estratégia de busca em tempo real. O artigo em questão apresenta a arquitetura do algoritmo, os mecanismos de autoaprendizado dos agentes e as perspectivas de aplicação dessa abordagem híbrida em tarefas complexas de otimização.
Negociando com o Calendário Econômico MQL5 (Parte 4): Implementando Atualizações de Notícias em Tempo Real no Painel
Este artigo aprimora nosso painel do Calendário Econômico implementando atualizações de notícias em tempo real para manter as informações de mercado atuais e acionáveis. Integramos técnicas de busca de dados ao vivo no MQL5 para atualizar os eventos no painel continuamente, melhorando a capacidade de resposta da interface. Essa atualização garante que possamos acessar as últimas notícias econômicas diretamente do painel, otimizando as decisões de negociação com base nos dados mais recentes.
Negociando com o Calendário Econômico do MQL5 (Parte 3): Adicionando Filtros de Moeda, Importância e Tempo
Neste artigo, implementamos filtros no painel do Calendário Econômico do MQL5 para refinar a exibição dos eventos de notícias por moeda, importância e tempo. Primeiro, estabelecemos critérios de filtro para cada categoria e depois os integramos ao painel para exibir apenas os eventos relevantes. Por fim, garantimos que cada filtro seja atualizado dinamicamente para fornecer aos traders insights econômicos focados e em tempo real.