Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)
Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.
Introdução ao MQL5 (Parte 11): Um guia para iniciantes sobre como trabalhar com indicadores incorporados no MQL5 (II)
Descubra como desenvolver um Expert Advisor (EA) em MQL5 usando múltiplos indicadores como RSI, MA e Oscilador Estocástico para detectar divergências ocultas de alta e de baixa. Aprenda a implementar um gerenciamento de risco eficaz e a automatizar negociações com exemplos detalhados e código-fonte totalmente comentado para fins educacionais!
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)
Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)
Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.
Desenvolvendo um EA multimoeda (Parte 26): Informador para instrumentos de negociação
Antes de avançarmos ainda mais no desenvolvimento de EAs multimoeda, vamos tentar mudar o foco para a criação de um novo projeto que utilize a biblioteca já desenvolvida. Com esse exemplo, identificaremos como é melhor organizar o armazenamento do código-fonte e como o novo repositório de código da MetaQuotes pode nos ajudar.
Desenvolvendo um Expert Advisor de Breakout Baseado em Eventos de Notícias do Calendário em MQL5
A volatilidade tende a atingir picos em torno de eventos de notícias de alto impacto, criando oportunidades significativas de breakout. Neste artigo, iremos delinear o processo de implementação de uma estratégia de breakout baseada em calendário. Abordaremos tudo, desde a criação de uma classe para interpretar e armazenar dados do calendário, o desenvolvimento de backtests realistas utilizando esses dados e, por fim, a implementação do código de execução para negociação ao vivo.
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)
O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)
Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"
Neste artigo, automatizaremos o padrão "Cabeça e Ombros" em MQL5. Analisaremos sua arquitetura, implementaremos um EA para sua detecção e negociação, e testaremos os resultados no histórico. Esse processo revela um algoritmo de negociação prático, que pode ser aprimorado.
Automatizando Estratégias de Negociação em MQL5 (Parte 3): O Sistema Zone Recovery RSI para Gestão Dinâmica de Operações
Neste artigo, criamos um Sistema EA Zone Recovery RSI em MQL5, utilizando sinais de RSI para acionar operações e uma estratégia de recuperação para gerenciar perdas. Implementamos uma classe "ZoneRecovery" para automatizar as entradas de operações, a lógica de recuperação e o gerenciamento de posições. O artigo conclui com insights de backtesting para otimizar a performance e aprimorar a eficácia do EA.
Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica
Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
Desenvolvimento de um Kit de Ferramentas para Análise da Ação do Preço (Parte 6): Mean Reversion Signal Reaper
Embora alguns conceitos possam parecer simples à primeira vista, trazê-los à prática pode ser bastante desafiador. No artigo abaixo, levaremos você a uma jornada pela nossa abordagem inovadora para automatizar um Expert Advisor (EA) que analisa o mercado de forma eficiente utilizando uma estratégia de reversão à média. Junte-se a nós enquanto desvendamos as complexidades desse empolgante processo de automação.
Gerenciamento de riscos (Parte 1): Fundamentos da construção de uma classe de gerenciamento de riscos
Neste artigo, analisaremos os fundamentos do gerenciamento de riscos no trading e veremos como criar nossas primeiras funções para calcular o lote adequado para uma operação, assim como o stop loss. Além disso, examinaremos em detalhes como essas funções funcionam, explicando cada etapa. Nosso objetivo é fornecer uma compreensão clara de como aplicar esses conceitos na negociação automática. No final, aplicaremos tudo na prática, criando um script simples com o arquivo incluível que desenvolveremos.
Como construir e otimizar um sistema de trading baseado em volume (Chaikin Money Flow - CMF)
Neste artigo, forneceremos um indicador baseado em volume, o Chaikin Money Flow (CMF), após identificar como ele pode ser construído, calculado e utilizado. Vamos compreender como construir um indicador personalizado. Compartilharemos algumas estratégias simples que podem ser usadas e, em seguida, as testaremos para entender qual delas é melhor.
Automatizando Estratégias de Trading em MQL5 (Parte 2): O Sistema Kumo Breakout com Ichimoku e Awesome Oscillator
Neste artigo, criamos um Expert Advisor (EA) que automatiza a estratégia Kumo Breakout utilizando o indicador Ichimoku Kinko Hyo e o Awesome Oscillator. Percorremos o processo de inicialização dos identificadores de indicadores, detecção das condições de breakout e codificação das entradas e saídas automatizadas de trades. Além disso, implementamos trailing stops e lógica de gerenciamento de posição para aprimorar o desempenho e a adaptabilidade do EA às condições de mercado.
Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning
Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e então aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
Dominando Operações de Arquivos em MQL5: Do I/O Básico à Construção de um Leitor CSV Personalizado
Este artigo aborda técnicas essenciais de manipulação de arquivos em MQL5, abrangendo logs de operações, processamento de CSV e integração de dados externos. Ele oferece tanto compreensão conceitual quanto orientação prática de codificação. Os leitores aprenderão a construir uma classe personalizada de importação CSV passo a passo, adquirindo habilidades práticas para aplicações reais.
Estratégia de trading "Captura de Liquidez" (Liquidity Grab)
A estratégia de captura de liquidez é um componente-chave do Smart Money Concepts (SMC), que visa identificar e aproveitar as ações dos participantes institucionais no mercado. Ela envolve mirar áreas de alta liquidez, como zonas de suporte ou resistência, onde ordens de grande volume podem provocar um movimento de preço antes que o mercado retome sua tendência. Este artigo explica em detalhes o conceito de captura de liquidez e descreve o processo de desenvolvimento de um EA para a estratégia de captura de liquidez em MQL5.
Implementação do algoritmo criptográfico SHA-256 do zero em MQL5
Criar integrações com bolsas de criptomoedas sem arquivos DLL foi, por muito tempo, uma tarefa complexa, mas esta solução fornece uma base completa para conexão direta ao mercado.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 52): Oscilador Accelerator
O Oscilador de Aceleração (Accelerator Oscillator) é mais um dos indicadores de Bill Williams, que monitora a aceleração do impulso de preço, e não apenas sua velocidade. Embora seja em muitos aspectos semelhante ao oscilador Awesome, que analisamos em um artigo recente, ele busca evitar os efeitos de defasagem, concentrando-se na aceleração e não apenas na taxa de variação. Como de costume, vamos examinar os padrões do indicador e também seu significado no trading com o uso de um EA criado no Assistente.
Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)
Propomos conhecer o framework Actor-Director-Critic, que combina aprendizado hierárquico e uma arquitetura com múltiplos componentes para criar estratégias de trading adaptativas. Neste artigo, analisamos em detalhe como o uso do Diretor para classificar as ações do Ator ajuda a otimizar decisões de trading de forma eficiente e a aumentar a robustez dos modelos nas condições dos mercados financeiros.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)
O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)
Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
Negociando com o Calendário Econômico do MQL5 (Parte 5): Aprimorando o Painel com Controles Responsivos e Botões de Filtro
Neste artigo, criamos botões para filtros de pares de moedas, níveis de importância, filtros de tempo e uma opção de cancelamento para melhorar o controle do painel. Esses botões são programados para responder dinamicamente às ações do usuário, permitindo uma interação contínua. Também automatizamos seu comportamento para refletir mudanças em tempo real no painel. Isso aprimora a funcionalidade geral, a mobilidade e a responsividade do painel.
Ondas triangulares e em forma de serra: ferramentas para o trader
Um dos métodos de análise técnica é a análise de ondas. Neste artigo, vamos examinar ondas de um tipo um pouco incomum, nomeadamente as triangulares e as em forma de serra. Com base nessas ondas, é possível construir vários indicadores técnicos que permitem analisar o movimento do preço no mercado.
Introdução ao MQL5 (Parte 10): Um Guia para Iniciantes sobre como Trabalhar com Indicadores Embutidos no MQL5
Este artigo introduz o trabalho com indicadores embutidos no MQL5, com foco na criação de um Expert Advisor (EA) baseado em RSI usando uma abordagem orientada a projeto. Você aprenderá a recuperar e utilizar valores de RSI, lidar com varreduras de liquidez e aprimorar a visualização de trades usando objetos no gráfico. Além disso, o artigo enfatiza a gestão eficaz de risco, incluindo a definição de risco baseado em porcentagem, implementação de relações risco-retorno e aplicação de modificações de risco para garantir lucros.
Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)
Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.
Desenvolvimento do Conjunto de Ferramentas de Análise de Price Action – Parte (4): Analytics Forecaster EA
Estamos indo além de simplesmente visualizar métricas analisadas nos gráficos, ampliando a perspectiva para incluir a integração com o Telegram. Essa melhoria permite que resultados importantes sejam entregues diretamente ao seu dispositivo móvel por meio do aplicativo Telegram. Junte-se a nós enquanto exploramos essa jornada neste artigo.
Desenvolvendo um EA multimoeda (Parte 25): Conectando uma nova estratégia (II)
Neste artigo, continuaremos a conectar uma nova estratégia ao sistema de otimização automática já criado. Vamos ver quais mudanças devem ser feitas no EA responsável pela criação do projeto de otimização e nos EAs das segunda e terceira etapas.
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)
Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)
Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)
O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.
Negociando com o Calendário Econômico MQL5 (Parte 4): Implementando Atualizações de Notícias em Tempo Real no Painel
Este artigo aprimora nosso painel do Calendário Econômico implementando atualizações de notícias em tempo real para manter as informações de mercado atuais e acionáveis. Integramos técnicas de busca de dados ao vivo no MQL5 para atualizar os eventos no painel continuamente, melhorando a capacidade de resposta da interface. Essa atualização garante que possamos acessar as últimas notícias econômicas diretamente do painel, otimizando as decisões de negociação com base nos dados mais recentes.
Utilizando o modelo de Machine Learning CatBoost como Filtro para Estratégias de Seguimento de Tendência
CatBoost é um poderoso modelo de machine learning baseado em árvores que se especializa em tomada de decisão com base em features estacionárias. Outros modelos baseados em árvores como XGBoost e Random Forest compartilham características semelhantes em termos de robustez, capacidade de lidar com padrões complexos e interpretabilidade. Esses modelos têm uma ampla gama de usos, desde análise de features até gestão de risco. Neste artigo, vamos percorrer o procedimento de utilização de um modelo CatBoost treinado como filtro para uma estratégia clássica de seguimento de tendência com cruzamento de médias móveis.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 50): Awesome Oscillator
O Awesome Oscillator é outro indicador de Bill Williams que é usado para medir o momentum. Ele pode gerar múltiplos sinais e, portanto, revisamos estes com base em padrões, como em artigos anteriores, aproveitando as classes e a montagem do MQL5 wizard.
Negociando com o Calendário Econômico do MQL5 (Parte 3): Adicionando Filtros de Moeda, Importância e Tempo
Neste artigo, implementamos filtros no painel do Calendário Econômico do MQL5 para refinar a exibição dos eventos de notícias por moeda, importância e tempo. Primeiro, estabelecemos critérios de filtro para cada categoria e depois os integramos ao painel para exibir apenas os eventos relevantes. Por fim, garantimos que cada filtro seja atualizado dinamicamente para fornecer aos traders insights econômicos focados e em tempo real.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 49): Aprendizado por reforço e otimização proximal de política
A otimização proximal de política (Proximal Policy Optimization) é mais um algoritmo de aprendizado por reforço, que atualiza a política, muitas vezes em forma de rede, em passos muito pequenos para garantir a estabilidade do modelo. Como de costume, vamos analisar como esse algoritmo pode ser aplicado em um EA construído com a ajuda do Assistente.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 48): Alligator de Bill Williams
O Indicador Alligator, que foi idealizado por Bill Williams, é um indicador versátil de identificação de tendências que fornece sinais claros e é frequentemente combinado com outros indicadores. As classes e a montagem do wizard MQL5 nos permitem testar uma variedade de sinais com base em padrões e, portanto, consideramos também este indicador.
Negociando com o Calendário Econômico MQL5 (Parte 2): Criando um Painel de Notícias
Neste artigo, criamos um painel prático de notícias usando o Calendário Econômico MQL5 para aprimorar nossa estratégia de negociação. Começamos projetando o layout, focando em elementos-chave como nomes dos eventos, importância e horário, antes de avançar para a configuração dentro do MQL5. Por fim, implementamos um sistema de filtragem para exibir apenas as notícias mais relevantes, dando aos traders acesso rápido a eventos econômicos impactantes.
Automatização de estratégias de trading com MQL5 (Parte 1): Sistema Profitunity (Trading Chaos de Bill Williams)
Neste artigo exploraremos o sistema Profitunity de autoria de Bill Williams, destrinchando seus principais componentes e sua abordagem única para operar em condições caóticas de mercado. Demonstramos para o leitor a implementação da estratégia na linguagem de programação MQL5, com ênfase na automatização dos principais indicadores e sinais de entrada/saída. Finalmente, testaremos e otimizaremos a estratégia, analisando em detalhes sua eficácia em diferentes cenários de mercado.