
Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)
O algoritmo Royal Flush Optimization, criado pelo autor, propõe uma nova forma de abordar problemas de otimização, substituindo a codificação binária clássica dos algoritmos genéticos por uma abordagem setorial, inspirada nos princípios do pôquer. O RFO demonstra como a simplificação de princípios fundamentais pode levar à criação de um método de otimização eficaz e prático. O artigo apresenta uma análise detalhada do algoritmo e os resultados dos testes realizados.

Busca dialética — Dialectic Search (DA)
Apresentamos o Algoritmo Dialético (DA), um novo método de otimização global inspirado no conceito filosófico de dialética. O algoritmo utiliza uma divisão única da população em pensadores especulativos e práticos. Os testes mostram um desempenho impressionante de até 98% em tarefas de baixa dimensionalidade e uma eficácia geral de 57,95%. Este artigo explica esses números e apresenta uma descrição detalhada do algoritmo e os resultados dos experimentos em diferentes tipos de funções.

Neurônio biológico para previsão de séries temporais financeiras
Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?

Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)
Meu algoritmo original. Neste artigo é apresentado o Algoritmo da Viagem Evolutiva no Tempo (TETA), inspirado no conceito de universos paralelos e fluxos temporais. A ideia central do algoritmo é que, embora a viagem no tempo no sentido convencional seja impossível, podemos escolher uma sequência de eventos que leva a diferentes realidades.

Algoritmo evolutivo de trading com aprendizado por reforço e extinção de estratégias não lucrativas (ETARE)
Apresentamos um algoritmo de trading inovador que combina algoritmos evolutivos com aprendizado profundo por reforço para operar no mercado Forex. O algoritmo utiliza um mecanismo de extinção das estratégias ineficientes, com o objetivo de otimizar a estratégia de negociação.

Simulação de mercado: Iniciando o SQL no MQL5 (V)
No artigo anterior mostrei como você deveria proceder, a fim de conseguir adicionar o mecanismo de pesquisa. Isto para que dentro do código MQL5, você pudesse de fato fazer uso pleno do SQL. A fim de conseguir obter os resultados quando for usar o comando SELECT FROM do SQL. Mas ficou faltando falar da última função que precisamos implementar. Esta é a função DatabaseReadBind. E como para entender ela adequadamente é algo que exigirá um pouco mais de explicações. Ficou decidido que isto seria feito, não naquele artigo anterior, mas sim neste daqui. Já que o assunto é bem extenso.

Criando um Painel Administrativo de Negociação em MQL5 (Parte III): Aprimorando a Interface com Estilo Visual (I)
Neste artigo, focaremos no estilo visual da interface gráfica do usuário (GUI) do nosso Painel Administrativo de Negociação usando MQL5. Exploraremos várias técnicas e recursos disponíveis no MQL5 que permitem a personalização e otimização da interface, garantindo que ela atenda às necessidades dos traders enquanto mantém uma estética atraente.

Dados de mercado sem intermediários: conectando MetaTrader 5 à MOEX via ISS API
Este artigo propõe uma solução para integrar o MetaTrader 5 com o serviço web ISS da MOEX. São fornecidas utilidades para geração automática de códigos-fonte com base no diretório da API e no índice dos principais elementos do serviço.

Simulação de mercado: Iniciando o SQL no MQL5 (III)
No artigo anterior vimos como poderíamos desenvolver uma classe em MQL5, que seria capaz de nos dar algum suporte. Cuja finalidade, se dá justamente para que possamos colocar o código SQL dentro de um arquivo de script. Isto de forma que não precisaríamos, ter que digitar o mesmo código em uma string, no código MQL5. Mas apesar de daquela solução, ser funcional. Ela contem alguns detalhes, que podemos melhorar e devemos melhorar.

Simulação de mercado: Iniciando o SQL no MQL5 (II)
Apesar de muitos imaginarem que podemos usar tranquilamente códigos em SQL dentro de outros códigos. Isto normalmente não se aplica. Devido ao fato, de que um código SQL, será sempre colocado dentro de um executável, como sendo uma string. E este fato de colocar o código SQL como sendo uma string, apesar de não ser problemático, para pequenos trechos de código. Podem sim ser algo que nos causará muitos transtornos e uma baita de uma dor de cabeça.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 38): Bandas de Bollinger
As Bandas de Bollinger são um indicador do tipo Envelope muito comum, utilizado por muitos traders para abrir e fechar operações manualmente. Vamos examinar esse indicador considerando o máximo possível dos diferentes sinais que ele pode gerar e ver como eles podem ser utilizados em um Expert Advisor montado com o wizard.

Criando um Expert Advisor Integrado ao Telegram em MQL5 (Parte 6): Adicionando Botões Inline Interativos
Neste artigo, integramos botões inline interativos em um Expert Advisor MQL5, permitindo controle em tempo real via Telegram. Cada clique em um botão dispara ações específicas e envia respostas de volta ao usuário. Também modularizamos funções para lidar com mensagens do Telegram e consultas de callback de forma eficiente.

Simulação de mercado: Iniciando o SQL no MQL5 (I)
Neste artigo, começaremos a explorar o uso do SQL dentro de um código MQL5. Vemos como podemos cria um banco de dados. Ou melhor dizendo, como podemos criar um arquivo de banco de dados em SQLite, usando para isto dispositivos ou procedimentos contidos dentro da linguagem MQL5. Veremos também, como criar uma tabela e depois como criar uma relação entre tabelas via chave primária e chave estrangeira. Isto tudo, usando novamente o MQL5. Veremos como é simples tornar um código que poderá no futuro ser portado para outras implementações do SQL, usando uma classe para nos ajudar a ocultar a implementação que está sendo criada. E o mais importante de tudo. Veremos que em diversos momentos, podemos correr o risco de fazer algo não dar certo ao usarmos SQL. Isto devido ao fato de que dentro do código MQL5, um código SQL irá ser sempre colocado como sendo uma STRING.

Aplicando Seleção de Recursos Localizada em Python e MQL5
Este artigo explora um algoritmo de seleção de recursos introduzido no artigo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. O algoritmo é implementado em Python para construir modelos de classificação binária que podem ser integrados com aplicativos MetaTrader 5 para inferência.

Simulação de mercado (Parte 24): Iniciando o SQL (VII)
No artigo anterior terminamos de fazer as devidas apresentações sobre o SQL. Então o que eu havia me proposto a mostrar e explicar, sobre SQL, ao meu ver, foi devidamente explicado. Isto para que todos, que vierem a ver o sistema de replay / simulador, sendo construído. Consigam no mínimo terem alguma noção do que pode estar se passando ali. Devido ao fato, de que não faz sentido, programar diversas coisas, que podem ser perfeitamente cobertas pelo SQL.

Indicador de força e direção da tendência em barras 3D
Vamos considerar uma nova abordagem para analisar tendências de mercado, baseada em visualização tridimensional e análise tensora da microestrutura do mercado.

Simulação de mercado (Parte 23): Iniciando o SQL (VI)
Neste artigo exploremos como fazer a visualização, e por consequência entender como um banco de dados está estruturado. Isto foi feito, ao observarmos o diagrama interno do banco de dados. Mesmo que este tipo de coisa, pareça ser algo desnecessário. Pode ser algo bastante valido, se você pretende de fato se tornar um administrador de bancos de dados. E sim, existem pessoas que, vivem de fazer manutenção, e criação de bancos de dados.

Algoritmo do buraco negro — Black Hole Algorithm (BHA)
O algoritmo do buraco negro (Black Hole Algorithm, BHA) utiliza os princípios da gravidade dos buracos negros para otimizar soluções. Neste artigo, vamos explorar como o BHA atrai as melhores soluções, evitando mínimos locais, e por que esse algoritmo se tornou uma ferramenta poderosa para resolver problemas complexos. Descubra como ideias simples podem gerar resultados impressionantes no mundo da otimização.

Introdução ao Connexus (Parte 1): Como usar a função WebRequest?
Este artigo é o início de uma série de desenvolvimentos para uma biblioteca chamada “Connexus”, que tem como objetivo facilitar requisições HTTP com MQL5. O objetivo deste projeto é fornecer ao usuário final essa oportunidade e mostrar como usar esta biblioteca auxiliar. Eu procurei torná-lo o mais simples possível para facilitar o estudo e proporcionar a possibilidade de futuros desenvolvimentos.

Criando um Painel Administrativo de Negociação em MQL5 (Parte II): Aprimorando a Responsividade e Mensagens Rápidas
Neste artigo, vamos aprimorar a responsividade do Painel Administrativo que criamos anteriormente. Além disso, vamos explorar a importância das mensagens rápidas no contexto de sinais de negociação.

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 5): Enviando Comandos do Telegram para o MQL5 e Recebendo Respostas em Tempo Real
Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.

Simulação de mercado (Parte 22): Iniciando o SQL (V)
Antes que você chute o balde, e decida abandonar o estudo sobre como usar o SQL. Deixe-me lembrá-lo, meu caro leitor, que aqui estamos ainda usando apenas o básico do básico. Ainda não exploramos algumas coisas que são possíveis de serem feitas no SQL. Assim que as explorarmos você verá que o SQL é bem mais prático do que parece. Mesmo que muito provavelmente, eu venha a mudar a direção do que estamos criando. Isto por que, o processo de criação é dinâmico. Irei mostrar um pouco mais sobre como fazer as coisas no SQL. Isto por que, ele de fato é algo que você precisa entender e conhecer. Ficar simplesmente achando que é mais capaz, que toda uma comunidade de programadores e desenvolvedores, apenas lhe fará perder tempo e oportunidade. Tenha calma, pois a coisa irá se tornar ainda mais interessante.

Robô de trading multimódulo em Python e MQL5 (Parte I): Criando a arquitetura básica e os primeiros módulos
Estamos desenvolvendo um sistema de trading modular que combina Python para análise de dados com MQL5 para execução de ordens. Quatro módulos independentes monitoram paralelamente diferentes aspectos do mercado: volumes, arbitragem, economia e riscos, utilizando RandomForest com 400 árvores para análise. É dado um foco especial no gerenciamento de risco, pois sem uma gestão adequada, até os algoritmos de trading mais avançados tornam-se inúteis.

Otimização de portfólio em Forex: Síntese de VaR e teoria de Markowitz
Como se realiza o trading com portfólio em Forex? Como pode ser feita a síntese entre a teoria de portfólio de Markowitz para otimizar as proporções do portfólio e o modelo VaR para otimizar o risco do portfólio? Vamos criar um código baseado na teoria de portfólio, onde, de um lado, obtemos um risco reduzido e, do outro, uma rentabilidade de longo prazo aceitável.

Negociação algorítmica baseada em padrões de reversão 3D
Estamos abrindo um novo mundo de trading automatizado em barras 3D. Como seria um robô de trading operando em barras multidimensionais de preço, e será que os clusters “amarelos” das barras 3D conseguem prever reversões de tendência? Como é o trading em múltiplas dimensões?

ADAM Populacional (estimativa adaptativa de momentos)
Este artigo apresenta a transformação do conhecido e popular método de otimização por gradiente ADAM em um algoritmo populacional e sua modificação com a introdução de indivíduos híbridos. A nova abordagem permite criar agentes que combinam elementos de soluções bem-sucedidas usando uma distribuição probabilística. A principal inovação é a formação de indivíduos híbridos populacionais, que acumulam de forma adaptativa informações das soluções mais promissoras, aumentando a eficácia da busca em espaços multidimensionais complexos.

Simulação de mercado (Parte 21): Iniciando o SQL (IV)
Muitos de vocês, caros leitores, podem ter um nível de experiência muito superior ao meu, no que rege trabalhar com bancos de dados. Tendo assim uma visão diferente da minha. Porém, como era preciso definir, e desenvolver alguma forma de explicar o motivo pelo qual os bancos de dados, são criados da forma como são criados. Explicar o por que o SQL tem o formato que tem. Mas principalmente, por que as chaves primárias e chaves estrangeiras vieram a surgir. Foi preciso deixar as coisas um pouco abstratas.

Criando barras 3D com base em tempo, preço e volume
O que são gráficos de preços 3D multidimensionais e como eles são construídos. Como as barras 3D preveem reversões de preço e como Python e MetaTrader 5 permitem construir essas barras volumétricas em tempo real.

Modelos de regressão não linear no mercado
Modelos de regressão não linear no mercado: é realmente possível prever os mercados financeiros? Vamos tentar criar um modelo para prever os preços do euro-dólar e, com base nele, fazer dois robôs: um em Python e outro em MQL5.

Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)
Neste artigo, apresentamos o Algoritmo de Otimização Aritmética (Arithmetic Optimization Algorithm, AOA), que se baseia em operações aritméticas simples: adição, subtração, multiplicação e divisão. Essas operações matemáticas básicas são fundamentais para a busca de soluções ótimas em diversas tarefas.

Simulação de mercado (Parte 20): Iniciando o SQL (III)
Apesar de podermos fazer as coisas com um banco de dados, tendo cerca de 10 ou pouco mais registros. A coisa realmente se torna melhor assimilada, quando usamos um arquivo de banco de dados que contenha mais de 15 mil registros. Ou seja, se você for criar isto manualmente irá ser uma bela de uma tarefa. No entanto, dificilmente você irá encontrar algum banco de dados, mesmo para fins didáticos disponível para download. Mas não precisamos de fato recorrer a este tipo de coisa. Podemos usar o MetaTrader 5, para criar um banco de dados para nos. Neste artigo veremos como fazer isto.

Simulação de mercado (Parte 19): Iniciando o SQL (II)
Como eu disse no primeiro artigo sobre SQL, não faz sentido você perder tempo, programado rotinas e mais rotinas a fim de conseguir, gerar ou produzir algo que o próprio SQL já contém. Porém sem saber o básico do básico, você não conseguirá fazer nada em SQL, a fim de aproveitar de alguma forma o que esta ferramenta tem a nos oferecer. Sendo assim, aqui neste artigo iremos ver como fazer para conseguir executar tarefas primordiais a serem feitas em bancos de dados.

Aplicação de regras associativas para análise de dados no Forex
Como aplicar as regras preditivas de análise de dados do varejo de supermercados ao mercado real de Forex? Como as compras de biscoitos, leite e pão estão relacionadas às transações na bolsa? Este artigo explora uma abordagem inovadora para o trading algorítmico, baseada no uso de regras associativas.

Desenvolvendo um EA multimoeda (Parte 20): Organizando o pipeline de etapas de otimização automática de projetos (I)
Já criamos diversos componentes que facilitam o processo de otimização automática. Durante sua criação, seguimos a ciclicidade tradicional: desde a criação do código funcional mínimo até a refatoração e a obtenção de um código melhorado. Agora é hora de organizar nossa base de dados, que também é um componente-chave no sistema que estamos criando.

Simulação de mercado (Parte 18): Iniciando o SQL (I)
Não importa se vamos usar um ou outro programa de SQL. Seja MySQL, SQL Server, SQLite, OpenSQL ou qualquer outro. Todos tem algo em comum entre si. Este algo em comum é a linguagem SQL. Pois bem, mesmo que você não venha a usar de fato uma Workbench, poderá fazer manipulações ou trabalhar com um banco de dados diretamente no MetaEditor ou via MQL5. Isto pensando em fazer as coisas no MetaTrader 5. Mas para de fato conseguir fazer as coisas assim, você precisará de algum conhecimento sobre SQL. Então aqui vamos aprender pelo menos o básico.

Algoritmo de busca orbital atômica — Atomic Orbital Search (AOS): Modificação
Na segunda parte do artigo, continuaremos o desenvolvimento da versão modificada do algoritmo AOS (Atomic Orbital Search), focando em operadores específicos para aumentar sua eficiência e adaptabilidade. Após analisar as bases e mecânicas do algoritmo, discutiremos ideias para melhorar o desempenho e a capacidade de análise de espaços de soluções complexos, propondo novas abordagens para expandir sua funcionalidade como ferramenta de otimização.

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 4): Modularizando Funções de Código para Maior Reutilização
Neste artigo, reformulamos o código existente usado para enviar mensagens e capturas de tela do MQL5 para o Telegram, organizando-o em funções modulares reutilizáveis. Isso tornará o processo mais eficiente, permitindo uma execução mais rápida e uma gestão de código mais fácil em múltiplas instâncias.

Simulação de mercado (Parte 17): Sockets (XI)
Implementar a parte que será executada aqui no MetaTrader 5, está longe de ser complicado. Mas existem diversos cuidados e pontos de atenção a serem observados. Isto para que você caro leitor, consiga de fato fazer com que o sistema funcione. Lembre-se de uma coisa: Você não executará um único programa. Você estará na verdade, executando três programas ao mesmo tempo. E é importante que cada um seja implementado e construído de forma que trabalhem e conversem entre si. Isto sem que eles fiquem completamente sem saber o que cada um está querendo ou desejando fazer.

Métodos de otimização da biblioteca Alglib (Parte II)
Neste artigo, continuaremos a análise dos métodos de otimização restantes da biblioteca ALGLIB, com foco especial em seus testes em funções complexas e multidimensionais. Isso nos permitirá não apenas avaliar a eficiência de cada algoritmo, mas também identificar seus pontos fortes e fracos em diferentes condições.

Análise da influência do clima nas moedas de países agrícolas usando Python
Como o clima está relacionado ao mercado cambial? Na teoria econômica clássica, por muito tempo não se reconheceu a influência de fatores como o clima no comportamento do mercado. Porém, tudo mudou. Vamos tentar estabelecer conexões entre o estado do tempo e a situação das moedas agrícolas no mercado.