Busca oscilatória determinística — Deterministic Oscillatory Search (DOS)
O algoritmo Deterministic Oscillatory Search (DOS) é um método inovador de otimização global que combina as vantagens dos algoritmos de gradiente e dos algoritmos de enxame sem o uso de números aleatórios. O mecanismo de oscilações e de inclinações de fitness permite ao DOS explorar espaços de busca complexos por meio de um método determinístico.
Redes neurais em trading: Extração eficiente de características para classificação precisa (Construção de objetos)
Mantis é uma ferramenta universal para análise profunda de séries temporais, escalável de forma flexível para quaisquer cenários financeiros. Saiba como a combinação de patching, convoluções locais e atenção cruzada permite obter uma interpretação de alta precisão dos padrões de mercado.
Redes Adversariais Generativas (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 2): Criação de Símbolo Sintético para Testes
Neste artigo, estamos criando um símbolo sintético usando uma Rede Adversarial Generativa (GAN), o que envolve a geração de dados financeiros realistas que imitam o comportamento de instrumentos reais do mercado, como o EURUSD. O modelo GAN aprende padrões e volatilidade a partir de dados históricos do mercado e cria dados de preços sintéticos com características semelhantes.
Estudando a previsão conformal de séries temporais financeiras
Neste artigo, você conhecerá as previsões conformais e a biblioteca MAPIE, que as implementa. Essa abordagem é uma das mais modernas em aprendizado de máquina e permite focar no controle de riscos para os já existentes e variados modelos de aprendizado de máquina. As previsões conformais, por si só, não são uma forma de encontrar padrões nos dados. Elas apenas determinam o grau de confiança dos modelos existentes ao preverem exemplos específicos e permitem filtrar previsões confiáveis.
Otimização baseada em biogeografia — Biogeography-Based Optimization (BBO)
A otimização baseada em biogeografia (BBO) é um método elegante de otimização global inspirado nos processos naturais de migração de espécies entre ilhas de arquipélagos. A ideia por trás do algoritmo é simples, porém poderosa: soluções de alta qualidade compartilham ativamente suas características, enquanto soluções de baixa qualidade adotam novas características, criando um fluxo natural de informação das melhores soluções para as piores. Um operador adaptativo de mutação exclusivo garante um excelente equilíbrio entre diversificação e intensificação, e o BBO demonstra alta eficiência em diversas tarefas.
Carregamento de dados do Fundo Monetário Internacional em Python
Carregamento de dados do Fundo Monetário Internacional em Python: extraindo dados do FMI para aplicação em estratégias cambiais macroeconômicas. Como a macroeconomia pode ajudar o trader e o algotrader?
Determinação de taxas de câmbio justas com base na PPC usando dados do FMI
Criação, em Python, de um sistema de análise de taxas de câmbio baseado na paridade do poder de compra (PPC). O autor desenvolveu um algoritmo com 5 métodos de cálculo de taxas justas, utilizando dados do FMI. Trata-se de um guia prático de análise fundamentalista de moedas, processamento de dados econômicos e integração com sistemas de trading. Código completo de fonte aberta.