Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Busca oscilatória determinística — Deterministic Oscillatory Search (DOS)

Busca oscilatória determinística — Deterministic Oscillatory Search (DOS)

O algoritmo Deterministic Oscillatory Search (DOS) é um método inovador de otimização global que combina as vantagens dos algoritmos de gradiente e dos algoritmos de enxame sem o uso de números aleatórios. O mecanismo de oscilações e de inclinações de fitness permite ao DOS explorar espaços de busca complexos por meio de um método determinístico.
preview
Redes neurais em trading: Extração eficiente de características para classificação precisa (Construção de objetos)

Redes neurais em trading: Extração eficiente de características para classificação precisa (Construção de objetos)

Mantis é uma ferramenta universal para análise profunda de séries temporais, escalável de forma flexível para quaisquer cenários financeiros. Saiba como a combinação de patching, convoluções locais e atenção cruzada permite obter uma interpretação de alta precisão dos padrões de mercado.
preview
Redes Adversariais Generativas (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 2): Criação de Símbolo Sintético para Testes

Redes Adversariais Generativas (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 2): Criação de Símbolo Sintético para Testes

Neste artigo, estamos criando um símbolo sintético usando uma Rede Adversarial Generativa (GAN), o que envolve a geração de dados financeiros realistas que imitam o comportamento de instrumentos reais do mercado, como o EURUSD. O modelo GAN aprende padrões e volatilidade a partir de dados históricos do mercado e cria dados de preços sintéticos com características semelhantes.
preview
Estudando a previsão conformal de séries temporais financeiras

Estudando a previsão conformal de séries temporais financeiras

Neste artigo, você conhecerá as previsões conformais e a biblioteca MAPIE, que as implementa. Essa abordagem é uma das mais modernas em aprendizado de máquina e permite focar no controle de riscos para os já existentes e variados modelos de aprendizado de máquina. As previsões conformais, por si só, não são uma forma de encontrar padrões nos dados. Elas apenas determinam o grau de confiança dos modelos existentes ao preverem exemplos específicos e permitem filtrar previsões confiáveis.
preview
Otimização baseada em biogeografia — Biogeography-Based Optimization (BBO)

Otimização baseada em biogeografia — Biogeography-Based Optimization (BBO)

A otimização baseada em biogeografia (BBO) é um método elegante de otimização global inspirado nos processos naturais de migração de espécies entre ilhas de arquipélagos. A ideia por trás do algoritmo é simples, porém poderosa: soluções de alta qualidade compartilham ativamente suas características, enquanto soluções de baixa qualidade adotam novas características, criando um fluxo natural de informação das melhores soluções para as piores. Um operador adaptativo de mutação exclusivo garante um excelente equilíbrio entre diversificação e intensificação, e o BBO demonstra alta eficiência em diversas tarefas.
preview
Carregamento de dados do Fundo Monetário Internacional em Python

Carregamento de dados do Fundo Monetário Internacional em Python

Carregamento de dados do Fundo Monetário Internacional em Python: extraindo dados do FMI para aplicação em estratégias cambiais macroeconômicas. Como a macroeconomia pode ajudar o trader e o algotrader?
preview
Determinação de taxas de câmbio justas com base na PPC usando dados do FMI

Determinação de taxas de câmbio justas com base na PPC usando dados do FMI

Criação, em Python, de um sistema de análise de taxas de câmbio baseado na paridade do poder de compra (PPC). O autor desenvolveu um algoritmo com 5 métodos de cálculo de taxas justas, utilizando dados do FMI. Trata-se de um guia prático de análise fundamentalista de moedas, processamento de dados econômicos e integração com sistemas de trading. Código completo de fonte aberta.