Hibridização de algoritmos populacionais. Estruturas sequenciais e paralelas
Aqui, vamos mergulhar no mundo da hibridização de algoritmos de otimização, analisando três tipos principais: mistura de estratégias, hibridização sequencial e paralela. Realizaremos uma série de experimentos combinando e testando algoritmos de otimização relevantes.
Importância da qualidade do gerador de números aleatórios no desempenho dos algoritmos de otimização
Neste artigo, analisaremos o gerador de números aleatórios Mersenne Twister e o compararemos com o gerador padrão do MQL5. Veremos como a qualidade dos geradores de números aleatórios influencia os resultados dos algoritmos de otimização.
Trading por algoritmo: IA e seu caminho para os topos dourados
Neste artigo, é demonstrado um método de criação de estratégias de trading para o ouro usando aprendizado de máquina. Ao analisar o método proposto para a previsão de séries temporais sob diferentes ângulos, é possível identificar suas vantagens e desvantagens em comparação com outras formas de criação de sistemas de trading baseadas somente na análise e previsão de séries temporais financeiras.
Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)
Apresento o framework MacroHFT, que aplica aprendizado por reforço contextual com memória para melhorar as decisões em trading de alta frequência de criptomoedas, utilizando dados macroeconômicos e agentes adaptativos.
Ganhe Vantagem em Qualquer Mercado (Parte IV): Índices de Volatilidade do Euro e do Ouro da CBOE
Vamos analisar dados alternativos selecionados pela Chicago Board Of Options Exchange (CBOE) para melhorar a precisão de nossas redes neurais profundas ao prever o símbolo XAUEUR.
Analisamos o código binário dos preços no mercado (Parte I): Um novo olhar sobre a análise técnica
Este artigo apresenta uma abordagem inovadora para a análise técnica, baseada na conversão dos movimentos de preço em código binário. O autor mostra como diferentes aspectos do comportamento do mercado - desde movimentos simples de preço até padrões complexos - podem ser codificados em sequências de zeros e uns.
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina
A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.
Algoritmo de Busca Cooperativa Artificial (Artificial Cooperative Search, ACS)
Apresentamos o algoritmo Artificial Cooperative Search (ACS). Este método inovador utiliza uma matriz binária e várias populações dinâmicas, baseadas em relações mutualísticas e cooperação, para encontrar rapidamente e com precisão soluções ótimas. A abordagem única do ACS em relação a "predadores" e "presas" permite alcançar excelentes resultados em problemas de otimização numérica.
Integração do MQL5 com pacotes de processamento de dados (Parte 1): Análise avançada de dados e processamento estatístico
A integração permite um fluxo de trabalho contínuo, no qual os dados financeiros brutos do MQL5 podem ser importados para pacotes de processamento de dados, como o Jupyter Lab, possibilitando análises avançadas, incluindo testes estatísticos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 21): Testando com Dados do Calendário Econômico
Os dados do Calendário Econômico não estão disponíveis para testes com Expert Advisors no Strategy Tester, por padrão. Vamos explorar como bancos de dados poderiam ajudar a contornar essa limitação. Portanto, neste artigo, exploramos como os bancos de dados SQLite podem ser usados para arquivar notícias do Calendário Econômico, de modo que os Expert Advisors montados pelo Wizard possam usá-los para gerar sinais de trade.
Ciência de dados e aprendizado de máquina (Parte 32): Como manter a relevância de modelos de IA com treinamento on-line
No mundo em constante transformação do trading, adaptar-se às mudanças do mercado é simplesmente uma necessidade. Todos os dias surgem novos padrões e tendências, o que torna difícil até mesmo para os modelos mais avançados de aprendizado de máquina manterem sua eficácia diante de condições em mutação. Neste artigo, vamos falar sobre como manter os modelos relevantes e capazes de reagir a novos dados de mercado por meio de reeducação automática.
Informações detalhadas sobre trading baseado em volume: Indo além dos gráficos OHLC
Um sistema de trading algorítmico que combina análise de volume com métodos de machine learning, em especial com redes neurais LSTM. Diferente das abordagens tradicionais de trading, que se concentram principalmente no movimento dos preços, este sistema enfatiza os padrões de volume e suas derivadas para prever os movimentos do mercado. A metodologia inclui três componentes principais: análise das derivadas do volume (primeira e segunda derivada), previsões LSTM para padrões de volume e indicadores técnicos tradicionais.
Algoritmo de otimização baseado em brainstorming — Brain Storm Optimization (Parte II): Multimodalidade
Na segunda parte do artigo, vamos para a implementação prática do algoritmo BSO, realizaremos testes com funções de teste e compararemos a eficiência do BSO com outros métodos de otimização.
Redes neurais em trading: Aprendizado hierárquico de características em nuvens de pontos
Continuamos estudando algoritmos para extração de características de nuvens de pontos. Neste artigo, exploraremos mecanismos para aumentar a eficiência do método PointNet.
Algoritmo evolutivo de trading com aprendizado por reforço e extinção de estratégias não lucrativas (ETARE)
Apresentamos um algoritmo de trading inovador que combina algoritmos evolutivos com aprendizado profundo por reforço para operar no mercado Forex. O algoritmo utiliza um mecanismo de extinção das estratégias ineficientes, com o objetivo de otimizar a estratégia de negociação.
Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva
Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.
Redes neurais em trading: Análise de nuvem de pontos (PointNet)
A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.
Redes neurais em trading: Modelo adaptativo multiagente (Conclusão)
No artigo anterior, conhecemos o framework adaptativo multiagente MASA, que combina abordagens de aprendizado por reforço com estratégias adaptativas, garantindo um equilíbrio harmônico entre lucratividade e riscos em condições turbulentas de mercado. Implementamos o funcional de agentes individuais deste framework, e neste artigo continuaremos o trabalho iniciado, levando-o à sua conclusão lógica.
Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket
Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais que podem criar dados compatíveis com a maioria dos modelos de inteligência artificial (IA). A anotação precisa dos dados pode tornar o modelo de IA treinado mais alinhado com os objetivos e tarefas dos usuários, aumentar a precisão do modelo e até ajudar a alcançar uma melhoria significativa na qualidade!
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert
Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
Algoritmo do Big Bang e do Grande Colapso — BBBC (Big Bang - Big Crunch)
Este artigo apresenta o método Big Bang - Big Crunch, que possui duas fases principais: a criação cíclica de pontos aleatórios e sua compressão em direção à solução ótima. Essa abordagem combina diversificação e intensificação, permitindo encontrar gradualmente soluções melhores e abrindo novas possibilidades na área de otimização.
Redes neurais de maneira fácil (Parte 77): Cross-Covariance Transformer (XCiT)
Em nossos modelos, frequentemente usamos vários algoritmos de atenção. E, provavelmente, usamos Transformadores com mais frequência. A principal desvantagem deles é a exigência de recursos. Neste artigo, quero apresentar um algoritmo que ajuda a reduzir os custos computacionais sem perda de qualidade.
Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)
Ao estudarmos o método FEDformer, abrimos uma porta para a área de representação de séries temporais no domínio da frequência. No novo artigo, continuaremos o tema iniciado, e analisaremos um método que permite não apenas conduzir uma análise, mas também prever estados futuros no domínio frequencial.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks
O Deep-Q-Network é um algoritmo de aprendizado por reforço que utiliza redes neurais para projetar (estimar) o próximo valor-Q e a ação ideal durante o processo de treinamento de um módulo de aprendizado de máquina. Já consideramos um algoritmo alternativo de aprendizado por reforço, o Q-Learning. Este artigo, portanto, apresenta outro exemplo de como um MLP treinado com aprendizado por reforço pode ser usado dentro de uma classe de sinal personalizada.
Fibonacci no Forex (Parte I): Testando relações entre preço e tempo
Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...
Indicador de previsão ARIMA em MQL5
Neste artigo, criamos um indicador de previsão ARIMA em MQL5. É analisado como o modelo ARIMA forma previsões, sua aplicabilidade ao mercado Forex e ao mercado de ações em geral. Também é explicado o que é a autorregressão AR, de que forma os modelos autorregressivos são usados para previsão e como funciona o mecanismo de autorregressão.
Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading
Os modelos de inteligência artificial CatBoost ganharam enorme popularidade na comunidade de aprendizado de máquina graças à sua precisão nas previsões, eficiência e resistência a conjuntos de dados fragmentados e complexos. Este artigo trata de como usar esses modelos no mercado Forex.
Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições
A teoria das categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta série de artigos tem como objetivo descrever alguns de seus conceitos a fim de criar uma biblioteca aberta e utilizar ainda mais essa seção notável na criação de estratégias de negociação.
Informação mútua como critério para seleção progressiva de características
Neste artigo apresentamos a implementação da seleção progressiva de características em MQL5, baseada na informação mútua entre o conjunto ótimo de preditores e a variável alvo.
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (Conclusão)
O artigo analisa a adaptação e a implementação prática do framework ACEFormer por meio do MQL5 no contexto do trading algorítmico. São apresentados as principais decisões arquiteturais, as particularidades do treinamento e os resultados dos testes do modelo com dados reais.
Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado
A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.
Redes neurais em trading: Transformer eficiente em parâmetros com atenção segmentada (Conclusão)
No artigo anterior, abordamos os aspectos teóricos do framework PSformer, que incorpora duas inovações principais na arquitetura clássica do Transformer: o mecanismo de compartilhamento de parâmetros (Parameter Shared — PS) e a atenção a segmentos espaço-temporais (SegAtt). Neste artigo, damos continuidade à implementação dessas abordagens usando os recursos do MQL5.
Redes neurais em trading: Explorando a estrutura local dos dados
A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.
Neurônio biológico para previsão de séries temporais financeiras
Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?
Aplicação da teoria dos jogos em algoritmos de trading
Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
Redes neurais em trading: Modelo de dupla atenção para previsão de tendências
Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.
Técnicas do MQL5 Wizard que você precisa conhecer (Parte 36): Q-Learning com Cadeias de Markov
Aprendizado por Reforço é um dos três pilares principais do aprendizado de máquina, ao lado do aprendizado supervisionado e do aprendizado não supervisionado. Portanto, ele está relacionado ao controle ótimo, ou seja, aprender a melhor política de longo prazo que melhor se adeque à função objetivo. É nesse contexto que exploramos seu possível papel no processo de aprendizado de uma MLP (rede neural de múltiplas camadas) de um Expert Advisor montado pelo assistente do MQL5 Wizard.
Redes neurais em trading: Abordagem sem máscara para previsão do movimento de preços
Neste artigo, apresentamos o método Mask-Attention-Free Transformer (MAFT) e sua aplicação na área de trading. Ao contrário dos Transformers tradicionais, que exigem mascaramento de dados ao processar sequências, o MAFT otimiza o processo de atenção, eliminando a necessidade de mascaramento, o que melhora significativamente a eficiência computacional.
Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer
Os modelos baseados na arquitetura Transformer demonstram alta eficiência, mas seu uso é dificultado pelos altos custos de recursos, tanto na fase de treinamento quanto durante a utilização prática. Neste artigo, proponho conhecer algoritmos que permitem reduzir o uso de memória por esses modelos.
Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA
Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.