Artigos sobre como automatizar sistemas de negociação na linguagem MQL5

icon

Leia artigos sobre sistemas de negociação baseados em uma ampla diversidade de conceitos. Aprenda a usar métodos estatísticos e padrões sobre velas japonesas, a filtrar sinais e dominar indicadores 'semáforo'.

Graças ao Assistente MQL5, e sem ter que programar, você pode criar robôs para testar rapidamente suas ideias de negociação, além de aprender sobre algoritmos genéticos, entre outras coisas.

Novo artigo
recentes | melhores
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 21): Testando com Dados do Calendário Econômico

Técnicas do MQL5 Wizard que você deve conhecer (Parte 21): Testando com Dados do Calendário Econômico

Os dados do Calendário Econômico não estão disponíveis para testes com Expert Advisors no Strategy Tester, por padrão. Vamos explorar como bancos de dados poderiam ajudar a contornar essa limitação. Portanto, neste artigo, exploramos como os bancos de dados SQLite podem ser usados para arquivar notícias do Calendário Econômico, de modo que os Expert Advisors montados pelo Wizard possam usá-los para gerar sinais de trade.
preview
Desenvolvendo um sistema de Replay (Parte 69): Acertando o tempo (II)

Desenvolvendo um sistema de Replay (Parte 69): Acertando o tempo (II)

Aqui vamos entender, por que estamos precisamos usar a chamada iSpread. Ao mesmo tempo, vamos entender como o sistema consegue nos informar o tempo restante da barra, quando não temos ticks a serem usados para fazer tal coisa. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.
preview
Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema

Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema

Este artigo explora como a divulgação de notícias econômicas, o comportamento dos investidores e vários fatores podem influenciar as reversões de tendências de mercado. Inclui uma explicação em vídeo e prossegue incorporando código MQL5 ao nosso programa para detectar reversões de tendência, nos alertar e tomar as ações apropriadas com base nas condições de mercado. Isso se baseia em artigos anteriores da série.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica

Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica

A Regressão Simbólica é uma forma de regressão que começa com poucas ou nenhuma suposição sobre qual seria o modelo subjacente que mapeia os conjuntos de dados em estudo. Embora possa ser implementada por Métodos Bayesianos ou Redes Neurais, analisamos como uma implementação com Algoritmos Genéticos pode ajudar a personalizar uma classe de sinal especialista utilizável no MQL5 Wizard.
preview
Arbitragem triangular com previsões

Arbitragem triangular com previsões

Este artigo simplifica a arbitragem triangular, mostrando como usar previsões e softwares especializados para negociar moedas de forma mais inteligente, mesmo se você for novo no mercado. Pronto para negociar com expertise?
preview
Desenvolvendo um EA multimoeda (Parte 10): Criação de objetos a partir de uma string

Desenvolvendo um EA multimoeda (Parte 10): Criação de objetos a partir de uma string

O plano de desenvolvimento do EA prevê várias etapas com o salvamento de resultados intermediários em um banco de dados. Recuperá-los de lá é possível apenas na forma de strings ou números, não como objetos. Portanto, precisamos de uma maneira de recriar no EA os objetos necessários a partir de strings lidas do banco de dados.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.
preview
Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)

Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)

Nesta quarta parte, revisitamos os Expert Advisors (EAs) Simple Hedge e Simple Grid desenvolvidos anteriormente. Nosso foco agora é refinar o Simple Grid EA por meio de análise matemática e uma abordagem de força bruta, visando o uso ideal da estratégia. Este artigo mergulha profundamente na otimização matemática da estratégia, preparando o terreno para futuras explorações de otimização baseada em código em artigos posteriores.
preview
Arbitragem Estatística com previsões

Arbitragem Estatística com previsões

Vamos explorar a arbitragem estatística, pesquisar com Python símbolos correlacionados e cointegrados, criar um indicador para o coeficiente de Pearson e desenvolver um EA para negociar arbitragem estatística com previsões feitas com Python e modelos ONNX.
preview
Aprenda a operar a Fair Value Gap (FVG)/Imbalances passo a passo: Uma abordagem do conceito de Smart Money

Aprenda a operar a Fair Value Gap (FVG)/Imbalances passo a passo: Uma abordagem do conceito de Smart Money

Um guia passo a passo para criar e implementar um algoritmo de negociação automatizado em MQL5 com base na estratégia de Fair Value Gap (FVG). Um tutorial detalhado sobre como criar um expert advisor que pode ser útil tanto para iniciantes quanto para traders experientes.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 2): Mesclando Indicadores Nativos

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 2): Mesclando Indicadores Nativos

Este artigo foca em aproveitar os indicadores embutidos no MetaTrader 5 para filtrar sinais fora da tendência. Avançando a partir do artigo anterior, exploraremos como fazer isso usando o código MQL5 para comunicar nossa ideia ao programa final.
preview
Indicadores Personalizados (Parte 1): Um Guia Introdutório Passo a Passo para Desenvolver Indicadores Personalizados Simples em MQL5

Indicadores Personalizados (Parte 1): Um Guia Introdutório Passo a Passo para Desenvolver Indicadores Personalizados Simples em MQL5

Aprenda como criar indicadores personalizados usando MQL5. Este artigo introdutório irá guiá-lo através dos fundamentos da construção de indicadores personalizados simples e demonstrar uma abordagem prática para codificar diferentes indicadores personalizados para qualquer programador de MQL5 que seja novo nesse interessante tópico.
preview
Como construir e otimizar um sistema de negociação baseado em volatilidade (Chaikin Volatility - CHV)

Como construir e otimizar um sistema de negociação baseado em volatilidade (Chaikin Volatility - CHV)

Neste artigo, vamos apresentar outro indicador baseado em volatilidade, chamado Chaikin Volatility. Vamos entender como construir um indicador personalizado, após identificar como ele pode ser usado e construído. Vamos compartilhar algumas estratégias simples que podem ser usadas e, em seguida, testá-las para entender qual delas pode ser melhor.
preview
Redes neurais de maneira fácil (Parte 88): Codificador denso de séries temporais (TiDE)

Redes neurais de maneira fácil (Parte 88): Codificador denso de séries temporais (TiDE)

O desejo de obter previsões mais precisas leva os pesquisadores a complicar os modelos de previsão. Isso, por sua vez, aumenta os custos de treinamento e manutenção do modelo. Mas será que isso sempre é justificado? Neste artigo, proponho que você conheça um algoritmo que utiliza a simplicidade e a velocidade dos modelos lineares, e demonstra resultados no nível dos melhores com uma arquitetura mais complexa.
preview
Superando Desafios de Integração com ONNX

Superando Desafios de Integração com ONNX

ONNX é uma ótima ferramenta para integrar códigos complexos de IA entre diferentes plataformas, sendo uma ferramenta excelente, mas que vem com alguns desafios que devem ser superados para aproveitar ao máximo suas capacidades. Neste artigo, discutimos os problemas mais comuns que você pode enfrentar e como mitigá-los.
preview
Redes neurais de maneira fácil (Parte 87): Segmentação de séries temporais

Redes neurais de maneira fácil (Parte 87): Segmentação de séries temporais

A previsão desempenha um papel importante na análise de séries temporais. No novo artigo, falaremos sobre as vantagens da segmentação de séries temporais.
preview
Desenvolvendo um EA multimoeda (Parte 9): Coleta dos resultados de otimização de instâncias individuais da estratégia de trading

Desenvolvendo um EA multimoeda (Parte 9): Coleta dos resultados de otimização de instâncias individuais da estratégia de trading

Vamos delinear as principais etapas para o desenvolvimento do nosso EA. Uma das primeiras será realizar a otimização de uma instância individual da estratégia de trading desenvolvida. Tentaremos reunir em um único lugar todas as informações necessárias sobre as execuções do testador durante a otimização.
preview
Redes neurais de maneira fácil (Parte 86): Transformador em forma de U

Redes neurais de maneira fácil (Parte 86): Transformador em forma de U

Continuamos a analisar algoritmos de previsão de séries temporais. E neste artigo, proponho que você conheça o método U-shaped Transformer.
preview
Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

À medida que avançamos, utilizamos cada vez mais instâncias simultâneas de estratégias de negociação em um único EA. Vamos descobrir até quantas instâncias podemos utilizar antes de nos depararmos com limitações de recursos.
preview
Redes neurais de maneira fácil (Parte 85): previsão multidimensional de séries temporais

Redes neurais de maneira fácil (Parte 85): previsão multidimensional de séries temporais

Neste artigo, quero apresentar a vocês um novo método abrangente de previsão de séries temporais, que combina harmoniosamente as vantagens dos modelos lineares e dos transformers.
preview
Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)

Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)

Há muito já aprendemos que o pré-processamento dos dados brutos desempenha um grande papel na estabilidade do treinamento do modelo. E, para o processamento online de dados "brutos", frequentemente usamos a camada de normalização em lote. No entanto, às vezes surge a necessidade de um procedimento inverso. Um dos possíveis métodos para resolver tais tarefas é discutido neste artigo.
preview
Desenvolvendo um Trading System com base no Livro de Ofertas (Parte I): o indicador

Desenvolvendo um Trading System com base no Livro de Ofertas (Parte I): o indicador

O livro de ofertas - Depth of Market - é sem dúvidas algo de bastante relevância para a execução de trades rápidos, sobretudo em algoritmos de alta frequência - os HFT. Nessa série de artigos, iremos explorar esse tipo de evento de mercado que podemos obeter através do broker em muitos dos ativos negociados. Começaremos com um indicador em que são configuráveis a paleta de cores, a posição e o tamanho do histograma a ser exibido diretamente no gráfico. Também abordaremos uma forma de gerar eventos BookEvent para fins de testes do indicador em condições específicas. Como possíveis temas a serem abordados nos artigos futuros estão o armazenamento dessas distribuições de preços e formas de usá-las no testador de estratégia.
preview
Desenvolvendo um EA multimoeda (Parte 7): Seleção de grupos considerando o período forward

Desenvolvendo um EA multimoeda (Parte 7): Seleção de grupos considerando o período forward

Anteriormente, ao selecionar grupos de estratégias de trading para melhorar os resultados combinados, avaliamos os grupos apenas no mesmo período utilizado para a otimização dos EAs individuais. Vamos agora observar o que acontece ao aplicar a seleção no período forward.
preview
Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)

Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)

O algoritmo Conformer, apresentado aqui, foi desenvolvido para prever o tempo, que, em termos de variabilidade e imprevisibilidade, pode ser comparado aos mercados financeiros. O Conformer é um método complexo que combina as vantagens dos modelos de atenção e das equações diferenciais ordinárias.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
preview
Desenvolvimento de robô em Python e MQL5 (Parte 1): Pré-processamento de dados

Desenvolvimento de robô em Python e MQL5 (Parte 1): Pré-processamento de dados

Esse será um guia detalhado sobre como desenvolver um robô de trading baseado em aprendizado de máquina. Realizaremos a coleta e preparação de dados e características. Para a execução do projeto, utilizaremos a linguagem de programação Python e bibliotecas, bem como a plataforma MetaTrader 5.
preview
Agrupamento de séries temporais na inferência causal

Agrupamento de séries temporais na inferência causal

Os algoritmos de agrupamento em aprendizado de máquina são ferramentas importantes de aprendizado não supervisionado que permitem dividir os dados brutos em grupos com características semelhantes. Com esses grupos, é possível, por exemplo, realizar análise de mercado para um cluster específico, identificar os clusters mais resilientes em novos conjuntos de dados e também realizar inferências causais. Este artigo apresenta um método original para o agrupamento de séries temporais, utilizando a linguagem Python.
preview
Desenvolvendo um EA multimoeda (Parte 6): Automatizando a seleção de um grupo de instâncias

Desenvolvendo um EA multimoeda (Parte 6): Automatizando a seleção de um grupo de instâncias

Depois de otimizar uma estratégia de negociação, obtemos conjuntos de parâmetros que facilitam a criação de várias instâncias dessa estratégia, todas integradas em um único Expert Advisor. Antes, fazíamos isso manualmente, mas agora vamos tentar automatizar esse processo.
preview
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert

Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert

Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
preview
Desenvolvendo um sistema de Replay (Parte 61): Dando play no serviço (II)

Desenvolvendo um sistema de Replay (Parte 61): Dando play no serviço (II)

Acompanhe neste artigo, as modificações que foram necessárias serem feitas, para que o serviço de replay / simulação, pudesse trabalhar de forma mais eficiente e segura. Aqui também, irei mostrar algo que pode ser de grande interesse para quem deseja fazer um uso mais eficiente das classes. Além de falar e explicar como contornar um problema que existe no MQL5, que reduz a performance do código quando usamos classes.
preview
Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)

Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)

Neste artigo, gostaria de apresentar outro tipo de modelos voltados para o estudo da dinâmica do estado do ambiente.
preview
Gerenciador de risco para operar manualmente

Gerenciador de risco para operar manualmente

Neste artigo, falaremos em detalhes sobre como escrever uma classe gerenciadora de risco para negociar manualmente a partir do zero. Essa classe também poderá servir como base para os traders que operam usando programação.
preview
Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)

Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)

Em trabalhos anteriores, sempre avaliamos o estado atual do ambiente. No entanto, a dinâmica das mudanças dos indicadores sempre ficou "nos bastidores". Neste artigo, quero apresentar a vocês um algoritmo que permite avaliar a mudança direta dos dados entre dois estados consecutivos do ambiente.
preview
Experiência no desenvolvimento de estratégias de negociação

Experiência no desenvolvimento de estratégias de negociação

Neste artigo, proponho tentarmos desenvolver nossa própria estratégia de negociação. Uma estratégia de negociação deve ser construída com base em uma determinada vantagem estatística. E tal vantagem deve ser duradoura.
preview
Desenvolvendo um EA multimoeda (Parte 5): tamanho de posição variável

Desenvolvendo um EA multimoeda (Parte 5): tamanho de posição variável

Nos capítulos anteriores, o EA desenvolvido só podia usar um tamanho de posição fixo para negociações. Isso é adequado para testes, mas não é aconselhável ao negociar mediante uma conta real. Vamos adicionar a capacidade de operar com tamanhos de posição variáveis.
preview
O escore de propensão na inferência causalidade

O escore de propensão na inferência causalidade

O artigo examina o tema de pareamento na inferência causal. O pareamento é utilizado para comparar observações semelhantes em um conjunto de dados. Isso é necessário para determinar corretamente os efeitos causais e eliminar o viés. O autor explica como isso ajuda na construção de sistemas de negociação baseados em aprendizado de máquina, que se tornam mais estáveis em novos dados nos quais não foram treinados. O escore de propensão desempenha um papel central e é amplamente utilizado na inferência causal.
preview
Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)

Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)

Neste artigo, apresento o algoritmo GTGAN, que foi introduzido em janeiro de 2024 para resolver tarefas complexas de criação de layout arquitetônico com restrições de grafos.
preview
Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)

Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)

Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.