Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Rede neural na prática: Gradiente Descendente Estocástico

Rede neural na prática: Gradiente Descendente Estocástico

O artigo explica, na prática, como calcular e aplicar os gradientes de peso e viés no neurônio linear em MQL5, além de apresentar a variante estocástica do gradiente descendente. Discutimos critérios de parada, limitação de iterações e efeitos da amostragem parcial. No terminal do MetaTrader 5, são exibidos resultados e uma plotagem simples. O leitor é orientado a alterar o conjunto de treino e analisar o comportamento.
preview
Mineração de dados da CFTC em Python e modelo de IA com base neles

Mineração de dados da CFTC em Python e modelo de IA com base neles

Vamos tentar minerar dados da CFTC, carregar os relatórios COT e TFF via Python, conectar isso às cotações do MetaTrader 5 e a um modelo de IA e obter previsões. O que são os relatórios COT no mercado Forex? Como usar os relatórios COT e TFF para previsão?
preview
Mineração de dados dos balanços dos bancos centrais e obtenção de um panorama da liquidez global

Mineração de dados dos balanços dos bancos centrais e obtenção de um panorama da liquidez global

A mineração de dados dos balanços dos bancos centrais permite obter um panorama da liquidez global do mercado Forex e das principais moedas. Nós unificamos dados do Fed, do BCE, do BOJ e do PBoC em um índice composto e aplicamos aprendizado de máquina para identificar padrões ocultos. Essa abordagem transforma um fluxo bruto de dados em sinais reais de trading, conectando a análise fundamentalista e a análise técnica.
preview
Indicador do modelo CAPM no mercado Forex

Indicador do modelo CAPM no mercado Forex

Adaptação do modelo clássico CAPM para o mercado cambial Forex em MQL5. O indicador calcula a rentabilidade esperada e o prêmio de risco com base na volatilidade histórica. Os indicadores aumentam nos picos e nas depressões, refletindo os princípios fundamentais de precificação. Aplicação prática para estratégias contra a tendência e de seguimento de tendência, levando em conta a dinâmica da relação entre risco e rentabilidade em tempo real. Inclui o aparato matemático e a implementação técnica.
preview
Redes neurais em trading: Extração eficiente de características para classificação precisa (Construção de objetos)

Redes neurais em trading: Extração eficiente de características para classificação precisa (Construção de objetos)

Mantis é uma ferramenta universal para análise profunda de séries temporais, escalável de forma flexível para quaisquer cenários financeiros. Saiba como a combinação de patching, convoluções locais e atenção cruzada permite obter uma interpretação de alta precisão dos padrões de mercado.
preview
Redes neurais em trading: Extração eficiente de características para classificação precisa (Conclusão)

Redes neurais em trading: Extração eficiente de características para classificação precisa (Conclusão)

O framework Mantis transforma séries temporais complexas em tokens informativos e serve como uma base confiável para um Agente de trading inteligente, pronto para operar em tempo real.
preview
Indicador de previsão ARIMA em MQL5

Indicador de previsão ARIMA em MQL5

Neste artigo, criamos um indicador de previsão ARIMA em MQL5. É analisado como o modelo ARIMA forma previsões, sua aplicabilidade ao mercado Forex e ao mercado de ações em geral. Também é explicado o que é a autorregressão AR, de que forma os modelos autorregressivos são usados para previsão e como funciona o mecanismo de autorregressão.
preview
Rede neural na prática: Gradiente Descendente

Rede neural na prática: Gradiente Descendente

Neste artigo, tentarei apresentar, de forma o mais simplificada e didática, quanto foi possível fazer, uma das questões mais controvérsias quando o assunto é rede neural. Que é justamente como procurar o melhor ponto possível, ou menor custo de uma função. Mostrarei a diferença que existe entre uma regressão linear e um gradiente descendente. Ambos casos bastante simples e voltados para mostrar que nem sempre o que parece obvio, realmente é o melhor caminho.
preview
Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)

Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)

Conheça o Mantis, um modelo fundamental leve para classificação de séries temporais baseado em Transformer, com pré-treinamento contrastivo e atenção híbrida, que garantem precisão recorde e escalabilidade.
preview
Busca oscilatória determinística — Deterministic Oscillatory Search (DOS)

Busca oscilatória determinística — Deterministic Oscillatory Search (DOS)

O algoritmo Deterministic Oscillatory Search (DOS) é um método inovador de otimização global que combina as vantagens dos algoritmos de gradiente e dos algoritmos de enxame sem o uso de números aleatórios. O mecanismo de oscilações e de inclinações de fitness permite ao DOS explorar espaços de busca complexos por meio de um método determinístico.
preview
Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

O framework CATCH combina a transformada de Fourier e o patching de frequência para a identificação precisa de anomalias de mercado, inacessíveis aos métodos tradicionais. Neste trabalho, examinaremos como essa abordagem revela padrões ocultos nos dados financeiros.
preview
Previsão de Tendência com LSTM para Estratégias de Seguimento de Tendência

Previsão de Tendência com LSTM para Estratégias de Seguimento de Tendência

Memória de Curto e Longo Prazo (LSTM) é um tipo de rede neural recorrente (RNN) projetada para modelar dados sequenciais, capturando de forma eficaz dependências de longo prazo e resolvendo o problema do gradiente desvanecente. Neste artigo, exploraremos como utilizar LSTM para prever tendências futuras, aprimorando o desempenho de estratégias de seguimento de tendência. O artigo abordará a introdução de conceitos-chave e a motivação por trás do desenvolvimento, a obtenção de dados do MetaTrader 5, o uso desses dados para treinar o modelo em Python, a integração do modelo de aprendizado de máquina no MQL5 e a reflexão sobre os resultados e aspirações futuras com base em backtesting estatístico.
preview
EA autoaprendente com rede neural baseada em matriz de estados

EA autoaprendente com rede neural baseada em matriz de estados

EA autoaprendente com rede neural baseada em matriz de estados. Combinamos cadeias de Markov com uma rede neural multicamadas MLP, escrita com a biblioteca ALGLIB MQL5. Como cadeias de Markov e redes neurais podem ser combinadas para a previsão no Forex?
preview
Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)

Redes neurais em trading: Generalização de séries temporais sem vínculo com dados (Conclusão)

Este artigo permitirá que você veja como o Mamba4Cast transforma a teoria em um algoritmo de trading funcional e prepara o terreno para seus próprios experimentos. Não perca a oportunidade de obter um espectro completo de conhecimento e inspiração para o desenvolvimento da sua própria estratégia.
preview
Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)

Redes neurais em trading: Generalização de séries temporais sem vinculação a dados (Módulos básicos do modelo)

Damos continuidade ao conhecimento do framework Mamba4Cast. E hoje vamos nos aprofundar na implementação prática das abordagens propostas. O Mamba4Cast foi criado não para um longo aquecimento em cada nova série temporal, mas para entrar em operação de forma instantânea. Graças à ideia de Zero-Shot Forecasting, o modelo é capaz de fornecer imediatamente previsões de alta qualidade em dados reais sem retreinamento e sem ajuste fino de hiperparâmetros.
preview
Redes neurais em trading: generalização de séries temporais sem vinculação a dados (Mamba4Cast)

Redes neurais em trading: generalização de séries temporais sem vinculação a dados (Mamba4Cast)

Neste artigo, conhecemos o framework Mamba4Cast e analisamos em detalhe um de seus componentes-chave, a codificação posicional baseada em marcas temporais. É mostrado como é formada a incorporação temporal levando em conta a estrutura de calendário dos dados.
preview
Rede neural na prática: O caso da porta XOR

Rede neural na prática: O caso da porta XOR

Neste artigo tentarei mostrar a você, meu caro leitor, que nem tudo é como parece. Muitas das vezes somos levados a pensar que as coisas são de uma dada maneira, quando na verdade, podemos estar sendo levados a pensar algo que não necessariamente é verdade. Redes neurais, são de longe um dos assuntos mais interessantes em termos gerais. Tanto pelo ponto de vista matemático, eletrônico ou mesmo de software. Porém, diferente do que muitos acreditam ou pregam. Redes neurais não são nem de longe, a questão e solução definitiva. São apenas um ramo de pesquisa, no qual devemos sempre estar estudando e procurando nos informar sobre o que acontece nos bastidores.
preview
Modelo matricial de previsão baseado em cadeia de Markov

Modelo matricial de previsão baseado em cadeia de Markov

Criamos um modelo matricial de previsão baseado em uma cadeia de Markov. O que são cadeias de Markov e como uma cadeia de Markov pode ser usada para trading no Forex.
preview
Visão computacional para trading (Parte 2): complexificando a arquitetura até a análise 2D de imagens RGB

Visão computacional para trading (Parte 2): complexificando a arquitetura até a análise 2D de imagens RGB

Visão computacional para trading, como funciona e como é desenvolvida passo a passo. Criamos um algoritmo de reconhecimento de imagens RGB de gráficos de preços com um mecanismo de atenção e uma camada LSTM bidirecional. Como resultado, obtemos um modelo funcional de previsão do preço do euro-dólar com precisão de até 55% no conjunto de validação.
preview
Ciência de Dados e ML (Parte 33): Dataframe do Pandas em MQL5, Coleta de Dados para Uso em ML facilitada

Ciência de Dados e ML (Parte 33): Dataframe do Pandas em MQL5, Coleta de Dados para Uso em ML facilitada

Ao trabalhar com modelos de aprendizado de máquina, é essencial garantir consistência nos dados usados para treinamento, validação e testes. Neste artigo, criaremos nossa própria versão da biblioteca Pandas em MQL5 para garantir uma abordagem unificada para o tratamento de dados de aprendizado de máquina, assegurando que os mesmos dados sejam aplicados dentro e fora do MQL5, onde ocorre a maior parte do treinamento.
preview
Algoritmo do camelo — Camel Algorithm (CA)

Algoritmo do camelo — Camel Algorithm (CA)

O Algoritmo do camelo, desenvolvido em 2016, modela o comportamento dos camelos no deserto para resolver problemas de otimização, levando em conta fatores de temperatura, reservas e resistência. Neste trabalho é apresentada ainda uma versão modificada dele (CAm), com melhorias-chave, como a aplicação da distribuição gaussiana na geração de soluções e a otimização dos parâmetros do efeito de oásis.
preview
Redes Adversariais Generativas (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 2): Criação de Símbolo Sintético para Testes

Redes Adversariais Generativas (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 2): Criação de Símbolo Sintético para Testes

Neste artigo, estamos criando um símbolo sintético usando uma Rede Adversarial Generativa (GAN), o que envolve a geração de dados financeiros realistas que imitam o comportamento de instrumentos reais do mercado, como o EURUSD. O modelo GAN aprende padrões e volatilidade a partir de dados históricos do mercado e cria dados de preços sintéticos com características semelhantes.
preview
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (Conclusão)

Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (Conclusão)

O artigo analisa a adaptação e a implementação prática do framework ACEFormer por meio do MQL5 no contexto do trading algorítmico. São apresentados as principais decisões arquiteturais, as particularidades do treinamento e os resultados dos testes do modelo com dados reais.
preview
Análise quantitativa de tendências: coletando estatísticas em Python

Análise quantitativa de tendências: coletando estatísticas em Python

O que é a análise quantitativa de tendências no mercado Forex. Coletando estatísticas sobre as tendências, sua magnitude e distribuição no par de moedas EURUSD. Como a análise quantitativa de tendências ajuda a criar um EA lucrativo.
preview
Integrar seu próprio LLM em EA (Parte 5): Desenvolver e testar estratégia de trading com LLMs (IV) — Testar estratégia de trading

Integrar seu próprio LLM em EA (Parte 5): Desenvolver e testar estratégia de trading com LLMs (IV) — Testar estratégia de trading

Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e, em seguida, aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
preview
Mecanismos de gating em aprendizado por ensemble

Mecanismos de gating em aprendizado por ensemble

Neste artigo, continuamos nossa exploração de modelos ensemble discutindo o conceito de gates, especificamente como eles podem ser úteis na combinação das saídas dos modelos para aprimorar a precisão das previsões ou a generalização do modelo.
preview
Modelos ocultos de Markov em sistemas de trading com aprendizado de máquina

Modelos ocultos de Markov em sistemas de trading com aprendizado de máquina

Os modelos ocultos de Markov (HMM) representam uma classe poderosa de modelos probabilísticos, destinados à análise de dados sequenciais, nos quais os eventos observáveis dependem de alguma sequência de estados não observáveis (ocultos), que formam um processo de Markov. As principais suposições dos HMM incluem a propriedade de Markov para os estados ocultos, o que significa que a probabilidade de transição para o próximo estado depende apenas do estado atual, e a independência das observações, desde que o estado oculto atual seja conhecido.
preview
Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)

Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)

Um novo método metaheurístico baseado na abordagem fractal de divisão do espaço de busca para resolver tarefas de otimização. O algoritmo identifica e divide sequencialmente áreas promissoras, criando uma estrutura fractal auto-semelhante que concentra os recursos computacionais nos trechos mais promissores. Um mecanismo exclusivo de mutação, direcionado para as melhores soluções, garante um equilíbrio ideal entre diversificação e intensificação do espaço de busca, aumentando significativamente a eficiência do algoritmo.
preview
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)

Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)

Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.
preview
Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação

Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação

Continuação do estudo do algoritmo de otimização caótica. A segunda parte do artigo é dedicada aos aspectos práticos da implementação do algoritmo, ao seu teste e às conclusões.
preview
Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco

Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco

O artigo contém uma descrição detalhada do algoritmo de cálculo de taxas cruzadas, a visualização da matriz de desequilíbrios e recomendações para a configuração ideal dos parâmetros MinDiscrepancy e MaxRisk para uma negociação eficiente. O sistema calcula automaticamente o "valor justo" de cada par de moedas por meio de taxas cruzadas, gerando sinais de compra em desvios negativos e de venda em desvios positivos.
preview
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples

Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples

Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
preview
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.
preview
Algoritmo de otimização caótica — Chaos optimization algorithm (COA)

Algoritmo de otimização caótica — Chaos optimization algorithm (COA)

Algoritmo de otimização caótica (COA) aprimorado, que combina a influência do caos com mecanismos adaptativos de busca. O algoritmo utiliza diversos mapeamentos caóticos e componentes inerciais para explorar o espaço de busca. O artigo revela os fundamentos teóricos dos métodos caóticos de otimização financeira.
preview
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)

Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)

Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.
preview
Previsão de barras Renko com a ajuda de IA CatBoost

Previsão de barras Renko com a ajuda de IA CatBoost

Como usar barras Renko junto com IA? Vamos analisar o Renko-trading no Forex com precisão de previsões de até 59.27%. Exploraremos as vantagens das barras Renko para filtrar o ruído do mercado, entenderemos por que indicadores de volume são mais importantes do que padrões de preço e como configurar o tamanho ideal do bloco Renko para EURUSD. Um guia passo a passo para integrar CatBoost, Python e MetaTrader 5 para criar seu próprio sistema de previsão Renko Forex. Perfeito para traders que desejam ir além da análise técnica tradicional.
preview
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
preview
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)

O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
preview
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC

Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC

Soft Actor Critic é um algoritmo de Aprendizado por Reforço que utiliza 3 redes neurais. Uma rede ator e 2 redes críticas. Esses modelos de aprendizado de máquina são combinados em uma parceria mestre-escravo onde as redes críticas são modeladas para melhorar a precisão de previsão da rede ator. Ao mesmo tempo em que introduzimos ONNX nesta série, exploramos como essas ideias podem ser colocadas à prova como um sinal personalizado de um Expert Advisor montado pelo wizard.