Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)

Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)

Este artigo fala sobre um método de otimização baseado nos princípios de funcionamento do sistema imunológico do organismo — Micro Artificial Immune System (Micro-AIS) — uma modificação do AIS. O Micro-AIS utiliza um modelo mais simples do sistema imunológico e operações mais simples de processamento de informações imunológicas. O artigo também aborda as vantagens e desvantagens do Micro-AIS em comparação com o AIS tradicional.
preview
Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)

Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)

Pelo resultado dos testes realizados em artigos anteriores, concluímos que a qualidade da estratégia treinada depende muito da amostra de treinamento utilizada. Neste artigo, apresento a vocês um método simples e eficaz para selecionar trajetórias com o objetivo de treinar modelos.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons

Os perceptrons, redes com uma única camada oculta, podem ser um bom suporte para aqueles familiarizados com os fundamentos do trading automático e que desejam mergulhar nas redes neurais. Vamos examinar passo a passo como eles podem ser implementados no conjunto de classes de sinais, que faz parte das classes do Assistente MQL5 para EAs.
preview
Trabalho com modelos ONNX nos formatos float16 e float8

Trabalho com modelos ONNX nos formatos float16 e float8

Os formatos de dados utilizados para representar modelos de aprendizado de máquina desempenham um papel fundamental em sua eficiência. Nos últimos anos, surgiram vários novos tipos de dados desenvolvidos especificamente para trabalhar com modelos de aprendizado profundo. Neste artigo, vamos focar em dois novos formatos de dados que se tornaram amplamente utilizados nos modelos modernos.
preview
Algoritmos de otimização populacional: Algoritmo Boids, ou algoritmo de comportamento de enxame (Boids Algorithm, Boids)

Algoritmos de otimização populacional: Algoritmo Boids, ou algoritmo de comportamento de enxame (Boids Algorithm, Boids)

Neste artigo, estudaremos algoritmo Boids, baseado em exemplos únicos de comportamento de enxame de animais. O algoritmo Boids, por sua vez, serviu como base para a criação de uma classe inteira de algoritmos, agrupados sob o nome de "Inteligência de Enxame".
preview
Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro

Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro

Neste artigo, apresentamos a implementação de um algoritmo de seleção de características descrito em um artigo acadêmico intitulado "FREL: Um algoritmo estável de seleção de características", chamado de Ponderação de Características como Aprendizado Baseado em Energia Regularizada.
preview
Algoritmo de tribo artificial (Artificial Tribe Algorithm, ATA)

Algoritmo de tribo artificial (Artificial Tribe Algorithm, ATA)

O artigo analisa em detalhes os componentes-chave e as inovações do algoritmo de otimização ATA, que é um método evolutivo com um sistema de comportamento duplo único, que se adapta conforme a situação. Utilizando cruzamento para uma diversificação aprofundada, e migração para busca quando há estagnação em ótimos locais, o ATA combina aprendizado individual e social.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais

O agrupamento k-médias é uma abordagem para agrupar pontos de dados em um processo que inicialmente se concentra na representação macro do conjunto de dados, onde são aplicados centroides de cluster criados aleatoriamente. Com o tempo, esses centroides são ajustados e escalonados para representar melhor o conjunto de dados. Este artigo examina essa abordagem de agrupamento e algumas de suas aplicações.
preview
Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

O projeto envolve o uso de Python para previsão em mercados financeiros baseada em aprendizado profundo. Nós exploraremos as nuances do teste de desempenho do modelo usando indicadores-chave como erro absoluto médio (MAE), erro quadrático médio (MSE) e R-quadrado (R2), além de aprender a integrar tudo isso em um arquivo executável. Também criaremos um arquivo de modelo ONNX e um EA (Expert Advisor).
preview
Eigenvetores e autovalores: Análise exploratória de dados no MetaTrader 5

Eigenvetores e autovalores: Análise exploratória de dados no MetaTrader 5

Neste artigo, exploramos diferentes maneiras pelas quais os eigenvetores e os autovalores podem ser aplicados na análise exploratória de dados para revelar relacionamentos únicos nos dados.
preview
Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)

Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)

As últimas 2 partes foram dedicadas ao método transformador de decisões (DT), que modela sequências de ações no contexto de um modelo autorregressivo de recompensas desejadas. Neste artigo, vamos considerar outro algoritmo de otimização deste método.
preview
Filtragem de Sazonalidade e Período de Tempo para Modelos de Deep Learning ONNX com Python para EA

Filtragem de Sazonalidade e Período de Tempo para Modelos de Deep Learning ONNX com Python para EA

Podemos nos beneficiar da sazonalidade ao criar modelos de Deep Learning com Python? A filtragem de dados para os modelos ONNX ajuda a obter melhores resultados? Qual período de tempo devemos usar? Cobriremos tudo isso neste artigo.
preview
Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

A pesquisa do ambiente em tarefas de aprendizado por reforço é um problema atual. Anteriormente, já examinamos algumas abordagens. E hoje, eu proponho que nos familiarizemos com mais um método, baseado na maximização da norma nuclear. Ele permite que os agentes destaquem estados do ambiente com alto grau de novidade e diversidade.
preview
Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas

Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas

Continuamos a examinar funtores e como eles podem ser implementados usando redes neurais artificiais. Vamos temporariamente deixar de lado a abordagem que incluía a previsão de volatilidade, e tentar implementar nossa própria classe de sinais para estabelecer sinais para entrar e sair de uma posição.
preview
Algoritmos de otimização populacionais: enxame de pássaros (Bird Swarm Algorithm, BSA)

Algoritmos de otimização populacionais: enxame de pássaros (Bird Swarm Algorithm, BSA)

O artigo explora o BSA, um algoritmo baseado no comportamento das aves, inspirado na interação coletiva das aves em bando na natureza. Diferentes estratégias de busca dos indivíduos no BSA, incluindo a alternância entre comportamento de voo, vigilância e procura de alimento, tornam esse algoritmo multifacetado. Ele utiliza os princípios de comportamento de bando, comunicação, adaptabilidade, liderança e acompanhamento das aves para a busca eficaz de soluções ótimas.
preview
Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

O aprendizado contrastivo é um método de aprendizado de representação sem supervisão. Seu objetivo é ensinar o modelo a identificar semelhanças e diferenças nos conjuntos de dados. Neste artigo, discutiremos o uso de abordagens de aprendizado contrastivo para explorar diferentes habilidades do Ator.
preview
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II

Neste artigo, vamos considerar o algoritmo genético binário (BGA), que modela os processos naturais que ocorrem no material genético dos seres vivos na natureza.
preview
Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Apresento o framework adaptativo multiagente MASA, que une aprendizado por reforço e estratégias adaptativas, oferecendo um equilíbrio harmonioso entre rentabilidade e controle de riscos em condições de mercado turbulentas.
preview
Algoritmos de otimização populacionais: Algoritmo de evolução da mente (Mind Evolutionary Computation, MEC)

Algoritmos de otimização populacionais: Algoritmo de evolução da mente (Mind Evolutionary Computation, MEC)

Este artigo discute um algoritmo da família MEC, denominado algoritmo simples de evolução da mente (Simple MEC, SMEC). O algoritmo se destaca pela beleza da ideia subjacente e pela simplicidade de implementação.
preview
Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)

Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)

Continuamos a explorar os métodos de aprendizado por reforço. Neste artigo, proponho apresentar um algoritmo ligeiramente diferente que considera a política do agente sob a perspectiva de construir uma sequência de ações.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)

Apresentamos o sistema de negociação híbrido StockFormer, que combina codificação preditiva e algoritmos de aprendizado por reforço (RL). O framework utiliza 3 ramos Transformer com mecanismo integrado Diversified Multi-Head Attention (DMH-Attn), que melhora o módulo de atenção padrão com um bloco Feed-Forward multicabeça, permitindo capturar padrões de séries temporais em diferentes subespaços.
preview
Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Neste artigo, é proposto um novo método para criar sistemas de trading baseados em aprendizado de máquina, utilizando clusterização e anotação de trades para estratégias de retorno à média.
preview
Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador

Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador

Vamos nos afastar um pouco de nossos tópicos mais comuns e analisar uma parte do algoritmo do ChatGPT. Ele possui algumas semelhanças ou conceitos emprestados das transformações naturais? Vamos tentar responder a essas e outras perguntas usando nosso código no formato de classe de sinal.
preview
O Problema da Discordância: Mergulhando Mais Fundo na Complexidade da Explicabilidade em IA

O Problema da Discordância: Mergulhando Mais Fundo na Complexidade da Explicabilidade em IA

Neste artigo, exploramos o desafio de entender como a IA funciona. Modelos de IA frequentemente tomam decisões de maneiras que são difíceis de explicar, levando ao que é conhecido como o "problema da discordância". Esta questão é fundamental para tornar a IA mais transparente e confiável.
preview
ADAM Populacional (estimativa adaptativa de momentos)

ADAM Populacional (estimativa adaptativa de momentos)

Este artigo apresenta a transformação do conhecido e popular método de otimização por gradiente ADAM em um algoritmo populacional e sua modificação com a introdução de indivíduos híbridos. A nova abordagem permite criar agentes que combinam elementos de soluções bem-sucedidas usando uma distribuição probabilística. A principal inovação é a formação de indivíduos híbridos populacionais, que acumulam de forma adaptativa informações das soluções mais promissoras, aumentando a eficácia da busca em espaços multidimensionais complexos.
preview
Inferência causal em problemas de classificação de séries temporais

Inferência causal em problemas de classificação de séries temporais

Neste artigo, examinaremos a teoria da inferência causal usando aprendizado de máquina, bem como a implementação de uma abordagem personalizada em Python. A inferência causal e o pensamento causal têm suas raízes na filosofia e psicologia e desempenham um papel importante na nossa compreensão da realidade.
preview
Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)

Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)

Neste artigo, apresentamos o Algoritmo de Otimização Aritmética (Arithmetic Optimization Algorithm, AOA), que se baseia em operações aritméticas simples: adição, subtração, multiplicação e divisão. Essas operações matemáticas básicas são fundamentais para a busca de soluções ótimas em diversas tarefas.
preview
Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)

Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)

As médias móveis e o oscilador estocástico podem ser usados para gerar sinais de negociação de tendência. No entanto, esses sinais só serão observados após a ação do preço ter ocorrido. Podemos superar efetivamente essa defasagem inerente dos indicadores técnicos usando IA. Este artigo ensinará como criar um Expert Advisor totalmente autônomo com IA, de forma a melhorar qualquer uma de suas estratégias de negociação existentes. Até mesmo a estratégia de negociação mais antiga possível pode ser aprimorada.
preview
Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Neste artigo, continuaremos a falar sobre métodos de coleta de dados em uma amostra de treinamento. É claro que o processo de aprendizado requer constante interação com o ambiente. Mas as situações podem variar.
preview
Agrupamento de séries temporais na inferência causal

Agrupamento de séries temporais na inferência causal

Os algoritmos de agrupamento em aprendizado de máquina são ferramentas importantes de aprendizado não supervisionado que permitem dividir os dados brutos em grupos com características semelhantes. Com esses grupos, é possível, por exemplo, realizar análise de mercado para um cluster específico, identificar os clusters mais resilientes em novos conjuntos de dados e também realizar inferências causais. Este artigo apresenta um método original para o agrupamento de séries temporais, utilizando a linguagem Python.
preview
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Damos continuidade à análise do StockFormer, um sistema híbrido de negociação que combina codificação preditiva e algoritmos de aprendizado por reforço para análise de séries temporais financeiras. O sistema se baseia em três ramificações Transformer com o mecanismo Diversified Multi-Head Attention (DMH-Attn), que permite identificar padrões complexos e interrelações entre ativos. Anteriormente, aprendemos os aspectos teóricos do framework e implementamos os mecanismos do DMH-Attn; hoje vamos abordar a arquitetura dos modelos e seu treinamento.
preview
Redes neurais de maneira fácil (Parte 41): Modelos Hierárquicos

Redes neurais de maneira fácil (Parte 41): Modelos Hierárquicos

Este artigo descreve modelos hierárquicos de aprendizado que propõem uma abordagem eficaz para resolver tarefas complexas de aprendizado de máquina. Os modelos hierárquicos consistem em vários níveis, cada um responsável por aspectos diferentes da tarefa.
preview
Rede neural na prática: Função de reta

Rede neural na prática: Função de reta

Neste artigo, vamos passar rapidamente, por alguns métodos para conseguir a função que poderá representar os nossos dados no banco. Não irei me aprofundar em detalhes relacionados ao como usar estatísticas e estudos de probabilidade para interpretar os resultados. Deixo isto como dever de casa, para cada um que realmente deseja se aprofundar, na parte matemática da coisa. De qualquer forma, estudar tais coisas será primordial para que você de fato consiga compreender tudo que envolve estudos de redes neurais. Aqui irei pegar bem leve no tema.
preview
Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

No mundo acelerado dos mercados financeiros, separar sinais significativos do ruído é crucial para o sucesso nas operações de trading. Ao empregar arquiteturas sofisticadas de redes neurais, os autoencoders se destacam ao descobrir padrões ocultos dentro dos dados de mercado, transformando entradas ruidosas em insights acionáveis. Neste artigo, exploramos como os autoencoders estão revolucionando as práticas de trading, oferecendo aos traders uma ferramenta poderosa para melhorar a tomada de decisões e ganhar uma vantagem competitiva nos mercados dinâmicos de hoje.
preview
Teoria das Categorias em MQL5 (Parte 19): Indução do quadrado de naturalidade

Teoria das Categorias em MQL5 (Parte 19): Indução do quadrado de naturalidade

Continuamos a análise das transformações naturais, examinando a indução do quadrado de naturalidade. Por causa das limitações na implementação de várias moedas para os Expert Advisors desenvolvidos com o assistente MQL5, temos de buscar soluções criativas e eficientes para a classificação de dados usando scripts. As principais áreas de aplicação consideradas são a classificação de variações de preço e, consequentemente, sua previsão.
preview
Gerente de risco profissional remoto para Forex em Python

Gerente de risco profissional remoto para Forex em Python

Criamos um gerente de risco profissional remoto para Forex em Python e o implantamos em um servidor, passo a passo. Ao longo do artigo, veremos como gerenciar riscos no Forex de maneira programada e como evitar a perda total do depósito.
preview
Redes neurais em trading: Superpoint Transformer (SPFormer)

Redes neurais em trading: Superpoint Transformer (SPFormer)

Neste artigo, apresentamos um método de segmentação de objetos 3D baseado no Superpoint Transformer (SPFormer), que elimina a necessidade de agregação intermediária de dados. Isso acelera o processo de segmentação e melhora o desempenho do modelo.
preview
Redes neurais de maneira fácil (Parte 53): decomposição de recompensa

Redes neurais de maneira fácil (Parte 53): decomposição de recompensa

Já falamos várias vezes sobre a importância de escolher corretamente a função de recompensa que usamos para incentivar o comportamento desejável do Agente, adicionando recompensas ou penalidades por ações específicas. Mas a questão de como o Agente interpreta nossos sinais permanece em aberto. Neste artigo, discutiremos a decomposição da recompensa em termos de transmissão de sinais individuais ao Agente a ser treinado.
preview
Teoria das Categorias em MQL5 (Parte 18): Quadrado de naturalidade

Teoria das Categorias em MQL5 (Parte 18): Quadrado de naturalidade

Este artigo dá continuidade à série sobre a teoria das categorias, abordando as transformações naturais, que são um elemento fundamental da teoria. Vamos examinar a definição que parece complexa à primeira vista, depois mergulhar em exemplos e formas de aplicar as transformações na previsão de volatilidade.