コードベースの中の新しいパブリッシュ
- TimeServerDaylightSavings サーバーのタイムゾーンとサマータイムモードを見積もり履歴から経験的に検出する時間関連機能
- Simplest Logger class for MetaTrader 5 レベル、メッセージフォーマット、部分文字列のインクルードフィルタと除外フィルタをサポートする MetaTrader 5 のロギング用の最も単純なクラス。

本記事では、スマートなイベントフィルタリングと選択的ログ出力を用いて経済カレンダーを最適化し、ライブおよびオフラインモードでのバックテストをより高速かつ明確に実施できるようにします。イベント処理を効率化し、ログを重要な取引やダッシュボードイベントに絞ることで、戦略の可視化を向上させます。これらの改善により、ニュース駆動型取引戦略のテストと改善をシームレスにおこなえるようになります。

本記事では、グリッドマーチンゲールスキャルピング戦略(Grid-Mart Scalping Strategy)を探究し、MQL5による自動化と、リアルタイム取引インサイトを提供するダイナミックダッシュボードの構築をおこないます。本戦略のグリッド型マーチンゲールロジックとリスク管理機能を詳述し、さらに堅牢なパフォーマンスのためのバックテストおよび実運用展開についても案内します。

AIの画期的な進歩、たとえばChatGPTや自動運転車などは、単独のモデルから生まれたわけではなく、複数のモデルや共通の分野から得られた累積的な知識を活用することで実現しています。この「一度学習した知識を他に応用する」というアプローチは、アルゴリズム取引におけるAIモデルの変革にも応用可能です。本記事では、異なる金融商品の情報を活用し、他の銘柄における予測精度向上に役立てる方法として、転移学習の活用方法について解説します。

このツールは、複数の通貨ペア間のリアルタイム相関係数を計算し表示するCorrelation Dashboardです。ペア同士がどのように連動して動くかを可視化することで、プライスアクション分析に有益な文脈を加え、市場間のダイナミクスを先読みする手助けとなります。ここでは、その機能と活用方法を紹介します。

オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。

MQL5コードを強化するために、ロジックの最適化、計算の精緻化、実行時間の短縮をおこない、バックテストの精度を向上させましょう。パラメータの微調整、ループの最適化、非効率の排除によって、より高いパフォーマンスを実現します。

この記事では、最も難しいプログラミング状況のひとつである、同じ関数または手続きのテンプレート内で異なる型を使用する方法について説明します。これまで私たちは主に関数に焦点を当ててきましたが、ここで扱う内容はすべて手続きにも役立ち、応用可能です。

MQL5で、単なるPrint文を超えた強力なカスタムロギングフレームワークを実装する方法を学びましょう。このフレームワークは、ログの重要度レベル、複数の出力ハンドラ、自動ファイルローテーションをサポートし、実行中にすべて設定可能です。シングルトン設計のCLoggerをConsoleLogHandlerとFileLogHandlerに統合することで、[エキスパート]タブと永続ファイルの両方に、文脈情報やタイムスタンプ付きのログを記録できます。明確でカスタマイズ可能なログ形式と集中管理により、エキスパートアドバイザー(EA)のデバッグとパフォーマンストレースを効率化します。

本日は、コミュニケーションパネルのメッセージングインターフェースを、現代の高性能なコミュニケーションアプリの標準に合わせて強化することに焦点を当てます。この改善は、CommunicationsDialogクラスの更新によって実現されます。この記事とディスカッションでは、主要な知見を紹介しつつ、MQL5を用いたインターフェースプログラミングの次のステップを整理していきます。

フラクタル適応移動平均(FrAMA)とForce Indexオシレーターは、MQL5エキスパートアドバイザー(EA)内で組み合わせて使用できるもう1つのインジケーターのペアです。FrAMAはトレンドフォロー型インジケーターですが、Force Indexはボリュームベースのオシレーターであるため、これら2つのインジケーターは互いに少し補完し合います。いつものように、MQL5ウィザードを使用して、これら2つの可能性を迅速に調査します。

この記事では、取引アシスタントツール(Trade Assistant Tool)をアップグレードし、ドラッグ&ドロップ可能なパネル機能やホバー効果を追加して、インターフェースをより直感的で応答性の高いものにします。ツールを改良してリアルタイムの注文設定を検証し、市場価格に対して正確な取引構成が可能となるようにします。また、これらの改善をバックテストし、その信頼性を確認します。

この記事では、FX取引におけるペンディングオーダーの設置を簡素化するために開発した、MQL5によるインタラクティブ取引アシスタントツール(Trade Assistant Tool)について紹介します。まず概念設計を説明し、チャート上でエントリー、ストップロス、テイクプロフィット水準を視覚的に設定できるユーザーフレンドリーなGUIに焦点を当てます。さらに、MQL5での実装およびバックテストのプロセスを詳述し、このツールの信頼性を確認します。そして、後続のパートで発展的な機能を追加するための基盤を整えます。

アルゴリズム取引開発者のための専用ポータル「MQL5 Algo Forge」をご紹介します。MQL5 Algo Forgeは、Git のパワーと、MQL5エコシステム内でプロジェクトを管理・整理するための直感的なインターフェースを兼ね備えています。ここでは、気になる著者をフォローしたり、チームを結成したり、アルゴリズム取引プロジェクトで共同作業を行うことが可能です。

オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。

MetaTraderのマーケットからトレードロボットを購入し、インストールする方法
メタトレーダーのプロダクトは、mql5.com のウェブサイト上またはMetaTrader4,MetaTrader5から直接買うことができます。 希望のお支払い方法を選択して、トレーディングスタイルに合ったプロダクトをお選びいただき、アクティベートしてください。

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。前回の記事では、機械学習を加えて、これらのインジケーターのペアを紹介しました。ホワイトノイズカーネルを使用してこれら2つのインジケーターからのベクトル化されたシグナルを処理する回帰型ニューラルネットワークを使用しています。これは、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイルで実行されます。

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。パターンごとに何が役に立つのか、そして何を避けることができるのかを調べます。いつものように、ウィザードで組み立てられたEAと、エキスパートシグナルクラスに組み込まれているパターン使用関数を使用しています。

ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事に続き、今回は開発済みモデルの運用中の学習や更新を、強化学習を用いてどのように実現できるかを検討します。この記事で使用するアルゴリズムは、本連載ではまだ扱っていない「TRPO(Trust Region Policy Optimization、信頼領域方策最適化)」として知られる手法です。また、MQL5ウィザードによるEAの組み立ては、モデルのテストをより迅速におこなえるだけでなく、異なるシグナルタイプで配布し検証できる形でセットアップできる点も利点です。

ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。今回は、機械学習の主要な3つの学習モードすべてを活用して、どのように体系化できるかを見ていきます。ウィザードによって組み立てられたEAを使用することで、これら2つのインジケーターが示すパターンを評価することが可能になり、まずは教師あり学習をこれらのパターンにどのように適用できるかを検討します。