FXにおけるスワップ差裁定:合成ポートフォリオの構築と一貫したスワップフローの生成
金利差を活用して利益を得る方法をご存じでしょうか。本記事では、FXにおけるスワップ差裁定(スワップアービトラージ)を活用し、毎晩安定した利益を生み出し、市場の変動に強いポートフォリオを構築する方法について解説します。
MQL5 MVCパラダイムにおけるテーブルのビューおよびコントローラーコンポーネント:コンテナ
この記事では、コンテンツのスクロールに対応したContainer(コンテナ)コントロールの作成について解説します。その過程で、既存のグラフィックライブラリのコントロールクラスを改良していきます。
MQL5における取引へのコンピュータビジョンの統合(第1回):基本関数の作成
コンピュータビジョンおよびディープラーニングを活用したEURUSD予測システムです。本記事では、畳み込みニューラルネットワークが外国為替市場における複雑な価格パターンをどのように認識し、最大54%の精度で為替レートの変動を予測できるかを解説します。また、従来のテクニカル指標の代わりに、チャートの視覚的分析に人工知能技術を活用するアルゴリズムの構築手法を共有します。著者は、価格データを「画像」へと変換するプロセス、それらをニューラルネットワークで処理する方法、さらに活性化マップやアテンションヒートマップを通じてAIの「意識」を可視化する独自のアプローチを解説します。MetaTrader 5ライブラリを用いた実践的なPythonコードにより、読者は本システムを再現し、自身の取引へ応用することができます。
初級から中級まで:インジケーター(II)
本記事では、移動平均の計算をどのように実装するか、またその計算をおこなう際にどのような点に注意すべきかを確認します。さらに、OnCalculate関数のオーバーロードについても取り上げ、どのバージョンをいつ、どのように扱うべきかを理解していきます。
市場シミュレーション(第10回):ソケット(V)
これからExcelとMetaTrader 5の接続の実装を始めますが、その前にいくつか押さえておくべき重要なポイントがあります。これを理解しておくことで、なぜ動くのか、なぜ動かないのかで悩む必要がなくなります。そして、PythonとExcelを組み合わせることに尻込みする前に、xlwingsを使ってExcelからMetaTrader 5をある程度操作できる方法を見てみましょう。ここで紹介する内容は主に教育目的ですが、もちろん、ここで取り上げることだけに制限されるわけではありません。
初級から中級まで:インジケーター(I)
本記事では、初めてとなる完全に実用的かつ機能的なインジケーターを作成していきます。目的はアプリケーションの作り方そのものを示すことではありません。皆さんがご自身のアイデアをどのように開発できるのかを理解し、安全でシンプルかつ実践的な方法でそれを適用する機会を提供することにあります。
初心者からエキスパートへ:市場構造を認識したRSI取引
本記事では、相対力指数(RSI)オシレーターを市場構造と組み合わせて取引するための実践的な手法を解説します。特に、チャネル型のプライスアクションパターンに焦点を当て、それらが一般的にどのように取引されているか、そしてMQL5をどのように活用してこのプロセスを強化できるかを説明します。最終的には、トレンド継続の機会をより高い精度と一貫性で捉えることを目的とした、ルールベースの自動チャネル取引システムを構築できるようになるでしょう。
MQL5 MVCパラダイムにおけるテーブルのビューおよびコントローラーコンポーネント:サイズ変更可能な要素
本記事では、要素の端や角をマウスでドラッグしてコントロールをサイズ変更する機能を追加します。
機械学習を用いたトレンド取引戦略の開発
この研究では、トレンドフォロー型取引戦略を開発するための新しい手法を提案します。このセクションでは、学習データのアノテーション方法と、それを用いて分類器を学習させるプロセスについて説明します。このプロセスにより、MetaTrader 5上で稼働可能な、完全に実用的な取引システムが構築されます。
MQL5での戦略の可視化:基準チャートに最適化結果をレイアウトする
本記事では、最適化プロセスを可視化する例を示し、4つの最適化基準ごとに上位3つのパスを表示します。また、その3つのうち1つを選択し、表やチャートでデータを表示できる機能も提供します。
機械学習に基づく平均回帰戦略の作成
本記事では、機械学習を使った取引システムを構築するための、もう1つの独自のアプローチを提案します。クラスタ分析(クラスタリング)と取引のラベル付けを用いた平均回帰戦略のための手法です。
市場シミュレーション(第10回):ソケット(IV)
本記事では、MetaTrader 5を管理するためにExcelを活用する方法を、興味深い形で解説していきます。そのために、組み込みVBAを使わずに済むよう、Excelアドインを使用します。アドインが何を意味するのか分からない場合、本記事でExcelで直接Pythonをプログラミングする方法を学ぶことができます。
取引におけるニューラルネットワーク:ハイブリッドグラフシーケンスモデル(最終部)
引き続き、異なるアーキテクチャの利点を統合し、高い分析精度と計算リソースの効率的な配分を実現するハイブリッドグラフシーケンスモデル(GSM++)を検討します。これらのモデルは、隠れたパターンを効果的に識別し、市場ノイズの影響を低減して予測精度を向上させます。
リスク管理(第3回):リスク管理のメインクラスの構築
本記事では、システム内のリスクを管理するための重要な基盤となるコアのリスク管理クラスを作成し始めます。今回は、基礎の構築に焦点を当て、基本的な構造、変数、関数を定義します。加えて、最大損益値を設定するために必要なメソッドを実装し、リスク管理の土台を築きます。
初級から中級まで:イベント(II)
この記事では、すべてを必ずしも特定の方法で実装する必要がないことを見ていきます。問題解決には複数のアプローチが存在します。本記事を正しく理解するには、前回の記事で説明された概念を把握していることが前提となります。ここで提示する内容はあくまで学習目的のものであり、最終的なアプリケーションとして利用することを目的としたものではありません。
初心者からエキスパートへ:MQL5リスク強制EAによる取引規律の自動化
多くのトレーダーにとって、口座が破綻する最大の要因は、リスクルールを理解していることと、それを一貫して守ることの間にあるギャップです。感情による判断の上書き、リベンジトレード、あるいは単純な見落としによって、どれほど優れた戦略であっても容易に崩壊してしまいます。本記事では、リスク強制エキスパートアドバイザー(Risk Enforcement EA)を開発することで、MetaTrader 5プラットフォームを、あなたの取引ルールを一切の例外なく執行する揺るぎない監督者へと変えていきます。ディスカッションにぜひご参加ください。
取引におけるニューラルネットワーク:ハイブリッドグラフシーケンスモデル(GSM++)
グラフシーケンスモデル(GSM++)は、異なるアーキテクチャの利点を統合することで、高精度なデータ分析と最適化された計算コストを両立するモデルです。これらのモデルは、動的な市場データに効果的に適応し、金融情報の表現および処理能力を向上させます。
中心力最適化(CFO)アルゴリズム
本記事では、重力の法則にヒントを得た中心力最適化(Central Force Optimization, CFO)アルゴリズムを紹介します。このアルゴリズムは、物理的引力の原理を用いて最適化問題を解決する手法を探究するものです。ここでは、「より重い」解が、成功度の低い解を引き寄せる仕組みを扱います。
多通貨エキスパートアドバイザーの開発(第24回):新しい戦略の追加(II)
本記事では、引き続き、作成済みの自動最適化システムに新しい戦略を連携する方法を見ていきます。最適化プロジェクト作成EAと、第2ステージおよび第3ステージのEAにどのような変更を加える必要があるかを見てみましょう。
初心者からエキスパートへ:MQL5での可視化による地理的市場認識の強化
セッションを意識せずに取引することは、まるでコンパスなしで航海するようなものです。移動してはいるものの、目的を持って移動していないのです。本稿では、トレーダーが市場のタイミングを認識する方法を革新し、通常のチャートを動的な地理的表示に変換する手法を紹介します。MQL5の強力な可視化機能を活用して、リアルタイムでアクティブな取引セッションを点灯させるライブ世界地図を構築します。これにより、抽象的な市場時間が直感的な視覚情報として理解可能になります。この手法は取引心理を鋭敏化すると同時に、複雑な市場構造と実用的な洞察を結びつけるプロフェッショナル向けのプログラミング技術も明らかにします。
MQL5 MVCパラダイムのテーブルのビューコンポーネント:基本グラフィック要素
本記事では、MQL5におけるMVC (Model-View-Controller)パラダイムでのテーブル実装の一環として、ビューコンポーネント向けの基本的なグラフィック要素を開発するプロセスを扱います。本記事はビューコンポーネントに関する最初の記事であり、MetaTrader 5クライアントターミナル向けテーブル作成に関する連載の第3回目です。
初心者からエキスパートへ:時間フィルタ付き取引
ティックが常に流入しているからといって、すべての瞬間が取引チャンスであるわけではありません。本記事では「タイミングの技術」に焦点を当て、トレーダーが最も有利な市場時間帯を特定し、その中で取引をおこなうための時間分離アルゴリズムの構築について詳しく検討します。この規律を身につけることで、個人トレーダーは機関投資家のタイミングとより密接に同期できるようになり、成功を左右することの多い正確さと忍耐力を発揮できるようになります。MQL5の分析機能を通じて、タイミングと選択的取引の科学を探求しましょう。
MQL5入門(第26回):サポートおよびレジスタンスゾーンを使ったEAの構築
本記事では、サポートおよびレジスタンスゾーンを自動的に検出し、それに基づいて取引を実行するMQL5エキスパートアドバイザー(EA)の作成方法を学びます。EAにこれらの重要な価格レベルを認識させ、価格の反応を監視し、手動操作なしで取引判断をおこなう方法を理解することができます。
初心者からエキスパートへ:予測価格経路
フィボナッチレベルは、市場がしばしば尊重する実践的な枠組みを提供し、価格が反応しやすいゾーンを明確に示します。本記事では、フィボナッチリトレースメントのロジックを用いて将来の値動きを予測し、指値注文で押し目を狙うエキスパートアドバイザー(EA)を構築します。スイング検出からレベル描画、リスク管理、注文執行まで、一連のワークフロー全体を解説します。
MQL5入門(第26回):MQL5のAPIとWebRequest関数の習得
本記事では、MQL5におけるWebRequest関数とAPIの使用方法を紹介し、外部プラットフォームと通信する方法を解説します。MetaTrader 5から直接Telegramボットを作成し、チャットやグループのIDを取得し、メッセージの送信、編集、削除をおこなう方法を学びます。これにより、今後のMQL5プロジェクトでのAPI統合の基礎をしっかり身につけることができます。
MQL5 MVCパラダイムのテーブルのビューコンポーネント:シンプルな操作
本記事では、MVC (Model-View-Controller)パラダイムにおけるテーブル実装で、より複雑なグラフィック要素を構成するビューコンポーネントとしてのシンプルなコントロールについて解説します。ユーザーや他の要素との相互作用のための基本的な機能はコントローラーに実装されています。本記事はビューコンポーネントに関する第2回目の記事であり、MetaTrader 5クライアントターミナル向けテーブル作成に関する連載の第4回目です。
初心者からエキスパートへ:FX市場の取引期間
すべての市場の取引期間には始まりと終わりがあり、それぞれは終値によって完結します。この終値がその期間のセンチメントを定義します。各ローソク足のセッションも同様に、終値によってその性質が示されます。これらの基準点を理解することで、市場における現在のムードを測定でき、強気勢力と弱気勢力のどちらが支配しているのかを明らかにすることが可能になります。本記事では、Market Periods Synchronizerに新しい機能を開発するという重要な段階に進みます。この機能は、FX市場のセッションを可視化するものであり、より情報に基づいた取引判断を支援します。このツールは、強気派と弱気派のどちらがセッションを支配しているのかをリアルタイムで識別するうえで特に有効です。それでは、この概念について検討し、それが提供する洞察を明らかにしていきます。
MQL5のテーブルモデルに基づくテーブルクラスとヘッダクラス:MVC概念の適用
これは、MQL5でのテーブルモデル実装をMVC (Model-View-Controller)アーキテクチャパラダイムに基づいて解説する記事の第2部です。本記事では、前回作成したテーブルモデルをもとに、テーブルクラスおよびテーブルヘッダの開発について説明します。開発したクラスは、次回の記事で扱うビューおよびコントローラーコンポーネントの実装の基礎となります。
FX裁定取引:合成通貨の動きとその平均回帰の分析
本記事では、PythonおよびMQL5を用いて合成通貨の動きを分析し、現在のFX裁定取引の実現可能性について検討します。また、合成通貨を分析するための既製Pythonコードを紹介するとともに、FXにおける合成通貨の概念についても詳しく解説します。
ニューロボイド最適化アルゴリズム(NOA)
新しい生体模倣型最適化メタヒューリスティックであるNOA (Neuroboids Optimization Algorithm)は、集合知とニューラルネットワークの原理を組み合わせた手法です。従来の方法とは異なり、このアルゴリズムは自己学習型の「ニューロボイド」集団を使用し、それぞれが独自のニューラルネットワークを持ち、探索戦略をリアルタイムで適応させます。本記事では、アルゴリズムのアーキテクチャ、エージェントの自己学習メカニズム、そしてこのハイブリッドアプローチを複雑な最適化問題に応用する可能性について解説します。
PythonでリモートFXリスク管理システムを構築する
Pythonで動作するリモートの外国為替リスク管理システムを構築しており、サーバーにも段階的に展開しています。本記事を通して、プログラムでFXのリスクを管理する方法や、FXの資金を無駄にしない方法を学んでいきます。
レストラン経営達人アルゴリズム(SRA)
レストラン経営達人アルゴリズム(SRA)は、レストラン経営の原則に着想を得た革新的な最適化手法です。従来のアプローチとは異なり、SRAは弱い解を破棄するのではなく、成功した解の要素と組み合わせて改善します。このアルゴリズムは競争力のある結果を示し、最適化問題における探索と活用のバランスに関する新しい視点を提供します。
FX裁定取引:合成マーケットメーカーボット入門
今日は私の最初の裁定取引ロボット、つまり合成資産向けの流動性プロバイダー(と言えるかどうかは微妙ですが)を見ていきます。現在、このボットは大規模な機械学習システムのモジュールとして実運用で使われていますが、クラウドから古いFX裁定取引ロボットを引っ張り出してきたので、これを確認し、現代でどのように活用できるか考えてみたいと思います。
MQL5でのテーブルモデルの実装:MVC概念の適用
本記事では、MQL5におけるテーブルモデルの開発過程を、MVC (Model-View-Controller)アーキテクチャパターンを用いて解説します。データロジック、表示、制御を分離することで、構造化され柔軟かつ拡張可能なコードを実現します。テーブルモデルを構築するためのクラス設計や、データ格納のためのリンクリストの使用方法も取り上げます。
初心者からエキスパートへ:ローソク足のヒゲを読み解く
この議論では、ローソク足のヒゲに隠された価格変動の裏側を解明する一歩を踏み出します。Market Periods Synchronizerにヒゲ可視化機能を統合することで、ツールの分析深度とインタラクティビティを向上させます。このアップグレードされたシステムにより、トレーダーは下位時間足チャート上で上位時間足の価格拒否を直接可視化でき、これまでヒゲの陰に隠されていた詳細な構造を明らかにできます。
ビリヤード最適化アルゴリズム(BOA)
BOA法は、古典的なビリヤードに着想を得ており、最適解を探すプロセスを、玉が穴に落ちることで最良の結果を表すゲームとしてシミュレーションします。本記事では、BOAの基本、数学モデル、およびさまざまな最適化問題を解く際の効率について考察します。
多通貨エキスパートアドバイザーの開発(第24回):新しい戦略の追加(I)
本記事では、作成済みの自動最適化システムに新しい戦略を連携する方法を見ていきます。どのようなEAを作成する必要があるのか、EAライブラリのファイルを変更せずにできるのか、必要な変更を最小限に抑えられるかを確認してみましょう。
カオスゲーム最適化(CGO)
本記事では、新しいメタヒューリスティックアルゴリズムであるカオスゲーム最適化(CGO)を紹介します。CGOは、高次元問題に対しても高い効率を維持できるという独自の特性を示しています。ほとんどの最適化アルゴリズムとは異なり、CGOは問題の規模が大きくなると性能が低下するどころか、場合によっては向上することさえあり、これがこのアルゴリズムの主要な特徴です。
純粋なMQL5で実装した通貨ペア強度インジケーター
MetaTrader 5向けの通貨強度分析用のプロフェッショナルなインジケーターを開発します。このステップバイステップガイドでは、強力な取引ツールを作成する方法を解説します。視覚的なダッシュボードを搭載し、複数の時間足(H1、H4、D1)で通貨ペアの強さを計算し、動的なデータ更新を実装し、ユーザーフレンドリーなインターフェースを作成することができます。