
ログレコードをマスターする(第5回):キャッシュとローテーションによるハンドラの最適化
この記事では、ハンドラへのフォーマッタ追加、実行サイクルを管理するためのCIntervalWatcherクラスの導入、キャッシュとファイルローテーションによる最適化、さらにパフォーマンステストおよび実用的な使用例を通じて、ログライブラリをさらに改善します。これらの機能強化により、さまざまな開発シナリオに柔軟に対応可能な、効率的でスケーラブルなロギングシステムが実現します。

MQL5で取引管理者パネルを作成する(第9回):コード編成(I)
このディスカッションでは、大規模なコードベースを扱う際に直面する課題について掘り下げます。MQL5におけるコード構成のベストプラクティスを紹介し、取引管理パネルのソースコードの可読性と拡張性を向上させるための実践的なアプローチを実装します。また、他の開発者がアルゴリズム開発で活用できる再利用可能なコードコンポーネントの開発も目指しています。ぜひ最後までお読みいただき、ご意見をお寄せください。

PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標
この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。

プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA
MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。

トレンドフォロー戦略のためのLSTMによるトレンド予測
長・短期記憶(LSTM: Long Short-Term Memory)は、長期的な依存関係を捉える能力に優れ、勾配消失問題にも対処できる、時系列データ処理に特化した再帰型ニューラルネットワーク(RNN: Recurrent Neural Network)の一種です。本記事では、LSTMを活用して将来のトレンドを予測し、トレンドフォロー型戦略のパフォーマンスを向上させる方法について解説します。内容は、主要な概念と開発の背景の紹介、MetaTrader 5からのデータ取得、そのデータを用いたPythonでのモデル学習、学習済みモデルのMQL5への統合、そして統計的なバックテストに基づく結果の分析と今後の展望までを含みます。

知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)
MFI(Market Facilitation Index、マーケットファシリテーションインデックス)は、ビル・ウィリアムズによる指標の一つで、出来高と連動した価格変動の効率性を測定することを目的としています。いつものように、本記事では、ウィザードアセンブリシグナルクラスの枠組みにおいて、このインジケーターのさまざまなパターンを検証し、それに基づいたテストレポートおよび分析結果を紹介します。

MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発
この記事では、14期間および50期間の移動平均クロスオーバーをシグナルとして使用し、14期間RSIフィルターで確認するAdaptive Crossover RSI Trading Suiteシステムを開発します。本システムには取引日フィルター、注釈付きのシグナル矢印、監視用のリアルタイムダッシュボードが含まれており、このアプローチにより自動取引の精度と適応性が向上します。

データサイエンスとML(第33回):MQL5におけるPandas DataFrame、ML使用のためのデータ収集が簡単に
機械学習モデルを使用する際は、学習・検証・テストに使用するデータの一貫性を確保することが重要です。この記事では、MQL5の外部(多くの学習がおこなわれる環境)とMQL5内部の両方で同じデータを利用できるようにするため、MQL5で独自のPandasライブラリを作成します。

MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール
インジケーターを安全に使用する方法を定義したベストプラクティスに従うのは、必ずしも容易ではありません。市場の動きが穏やかな状況では、インジケーターが意図した通りのシグナルを発しないことがあり、その結果、アルゴリズム取引における貴重なチャンスを逃してしまう可能性があります。本稿では、この問題に対する潜在的な解決策として、利用可能な市場データに応じて取引ルールを適応させることが可能な取引アプリケーションの構築方法を提案します。

プライスアクション分析ツールキットの開発(第10回):External Flow (II) VWAP
私たちの総合ガイドで、VWAPの力を完全にマスターしましょう。MQL5とPythonを活用して、VWAP分析を取引戦略に統合する方法を学びます。市場に対する洞察を最大限に活かし、より良い取引判断を下せるようになりましょう。

金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第2回):テスト用の合成シンボルの作成
この記事では、敵対的生成ネットワーク(GAN)を使用して合成シンボルを作成し、EURUSDなどの実際の市場商品の挙動を模倣した現実的な金融データを生成します。GANモデルは、過去の市場データからパターンやボラティリティを学習し、同様の特性を持つ合成価格データを生成します。

MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築
この記事では、RSI(相対力指数)を活用して取引シグナルを生成する、MQL5によるMulti-Level Zone Recoveryシステムの開発について解説します。本システムでは、各シグナルインスタンスを動的に配列構造に追加し、Zone Recoveryロジックの中で複数のシグナルを同時に管理することが可能になります。このアプローチにより、スケーラブルかつ堅牢なコード設計を維持しながら、複雑な取引管理シナリオに柔軟かつ効果的に対応できる方法を紹介します。

独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

アンサンブル学習におけるゲーティングメカニズム
この記事では、アンサンブルモデルの検討をさらに進め、「ゲート」という概念に注目し、モデル出力を組み合わせることで予測精度や汎化性能の向上にどのように役立つかを解説します。

逆フェアバリューギャップ取引戦略
逆フェアバリューギャップ(IFVG)とは、価格が過去に特定されたフェアバリューギャップ(FVG)へ回帰した際に、通常想定されるサポートまたはレジスタンスとしての反応を示さず、その水準を無視して通過してしまう現象を指します。このような失敗は、市場の方向性の変調を示すサインである可能性があり、逆張り志向の取引アプローチにおいて優位性をもたらすシグナルとなることがあります。本記事では、MetaTrader 5エキスパートアドバイザー(EA)の戦略として、この逆フェアバリューギャップを定量的に捉え、取引ロジックに組み込むために私が独自に開発したアプローチを紹介します。

ログレコードをマスターする(第4回):ログをファイルに保存する
この記事では、基本的なファイル操作と、カスタマイズに対応した柔軟なハンドラの設定方法について紹介します。CLogifyHandlerFileクラスを更新し、ログをファイルに直接書き込むようにします。また、EURUSDで1週間にわたるストラテジーをシミュレーションし、各ティックごとにログを生成して、合計5分11秒のパフォーマンステストを実施します。この結果は今後の記事で比較し、パフォーマンス向上のためにキャッシュシステムの導入もおこなう予定です。

MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整
アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。

MQL5とMetaTrader 5のインジケーターの再定義
MQL5でインジケーター情報を収集する革新的なアプローチにより、開発者がカスタム入力をインジケーターに渡して即座に計算をおこなえるようになり、より柔軟で効率的なデータ分析が可能になります。この方法は、従来の制約を超えてインジケーターで処理される情報に対する制御性を高めるため、アルゴリズム取引において特に有用です。

プライスアクション分析ツールキットの開発(第9回):External Flow
本稿では、高度な分析手法として外部ライブラリを活用する、新たなアプローチを紹介します。pandasのようなライブラリは、複雑なデータを処理・解釈するための強力なツールを提供し、トレーダーが市場の動向についてより深い洞察を得られるようにします。このようなテクノロジーを統合することで、生のデータと実用的な戦略との間にあるギャップを埋めることができます。この革新的なアプローチの基盤を築き、テクノロジーと取引の専門知識を融合させる可能性を引き出すために、ぜひご一緒に取り組んでいきましょう。

MQL5取引ツールキット(第7回):直近でキャンセルされた予約注文に関する関数で履歴管理EX5ライブラリを拡張
直近でキャンセルされた予約注文を処理する関数に焦点を当て、History Manager EX5ライブラリの最終モジュールの作成を完了する方法を学習します。これにより、MQL5を使用してキャンセルされた予約注文に関連する重要な詳細を効率的に取得して保存するためのツールが提供されます。

プライスアクション分析ツールキットの開発(第8回):Metrics Board
最も強力なプライスアクション分析ツールの一つである「Metrics Board」は、ワンクリックで重要な市場指標を即座に表示し、市場分析を効率化するように設計されています。各ボタンには高値・安値のトレンド分析、出来高、その他の主要な指標の解析といった特定の機能が割り当てられています。このツールは、最も必要なタイミングで正確なリアルタイムデータを提供します。この記事では、その機能についてさらに詳しく掘り下げていきましょう。

MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)
RSI、MA、ストキャスティクスなどの複数のインジケーターを使用してMQL5でエキスパートアドバイザー(EA)を開発し、隠れた強気および弱気のダイバージェンスを検出する方法を学びます。教育目的で、詳細な例および完全にコメントされたソースコードを用いて、効果的なリスク管理を実装し、取引を自動化する方法をご紹介します。

MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合
この記事では、Pythonと連携したMQL5の実装について解説し、ブローカー関連の操作を自動化する方法を紹介します。VPS上にホストされて継続的に稼働するエキスパートアドバイザー(EA)が、あなたに代わって取引を実行すると想像してください。ある時点で、EAによる資金管理機能が非常に重要になります。具体的には、取引口座への残高補充や出金などの操作を含みます。本稿では、これらの機能の利点と実際の実装例を紹介し、資金管理を取引戦略にシームレスに統合する方法をお伝えします。どうぞご期待ください。

MQL5でカレンダーベースのニュースイベントブレイクアウトエキスパートアドバイザーを開発する
ボラティリティは、影響力の大きいニュースイベントの周辺でピークに達する傾向があり、大きなブレイクアウトの機会を生み出します。本記事では、カレンダーを基にしたブレイクアウト戦略の実装プロセスについて説明します。カレンダーデータを解釈・保存するためのクラスの作成、これを活用した現実的なバックテストの開発、そして最終的にライブ取引用の実行コードの実装までを一貫して解説します。

MQL5でSHA-256暗号化アルゴリズムをゼロから実装する
これまで、DLLを使用せずに暗号通貨取引所との統合を構築することは長らく課題とされてきました。しかし、本ソリューションは、市場へ直接接続するための包括的なフレームワークを提供します。

流動性狩り取引戦略
流動性狩り(Liquidity Grab)取引戦略は、市場における機関投資家の行動を特定し、それを活用することを目指すSmart Money Concepts(SMC)の重要な要素です。これには、サポートゾーンやレジスタンスゾーンなどの流動性の高い領域をターゲットにすることが含まれます。市場がトレンドを再開する前に、大量の注文によって一時的な価格変動が引き起こされます。この記事では、流動性狩りの概念を詳しく説明し、MQL5による流動性狩り取引戦略エキスパートアドバイザー(EA)の開発プロセスの概要を紹介します。

ログレコードをマスターする(第3回):ログを保存するためのハンドラの調査
この記事では、ログライブラリのハンドラの概念を説明し、その仕組みを理解するとともに、コンソール、データベース、ファイルの3種類の基本的な実装を作成します。今後の記事に向けて、ハンドラの基本構造から実践的なテストまでを網羅し、完全な機能実装の基盤を整えます。

トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル
隠れマルコフモデル(HMM)は、観測可能な価格変動を分析することで、市場の潜在的な状態を特定する強力な統計手法です。取引においては、市場レジームの変化をモデル化・予測することで、ボラティリティの予測精度を高め、トレンドフォロー戦略の構築に役立ちます。本記事では、HMMをボラティリティのフィルターとして活用し、トレンドフォロー戦略を開発するための一連の手順を紹介します。

プライスアクション分析ツールキットの開発(第7回):Signal Pulse EA
ボリンジャーバンドとストキャスティクスオシレーターを組み合わせたMQL5エキスパートアドバイザー(EA)「Signal Pulse」で、多時間枠分析の可能性を引き出しましょう。高精度で勝率の高い取引シグナルを提供します。この戦略の実装方法や、カスタム矢印を用いた売買シグナルの可視化手法を学び、実践的な活用を目指しましょう。複数の時間枠にわたる自動分析を通じて、トレード判断力を高めたいトレーダーに最適なツールです。

MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。

初級から中級まで:配列(I)
この記事は、これまでに議論してきた内容と、新たな研究段階との橋渡しとなるものです。この記事を理解するためには、前回までの記事を読んでおく必要があります。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

人工生態系ベースの最適化(AEO)アルゴリズム
この記事では、初期の解候補集団を生成し、適応的な更新戦略を適用することで、生態系構成要素間の相互作用を模倣するメタヒューリスティック手法、人工エコシステムベース最適化(AEO: Artificial Ecosystem-based Optimization)アルゴリズムについて検討します。AEOの動作過程として、消費フェーズや分解フェーズ、さらに多様なエージェント行動戦略など、各段階を詳細に説明します。あわせて、本アルゴリズムの特徴と利点についても紹介します。

リプレイシステムの開発(第69回):正しい時間を知る(II)
今日は、iSpread機能がなぜ必要なのかについて考察します。同時に、ティックが1つも存在しない状況で、システムがどのようにバーの残り時間を通知するのかについても理解を深めていきます。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)
前回の記事で開始した、MQL5を使用したRefMask3Dフレームワークの構築作業を引き続き進めていきます。このフレームワークは、点群におけるマルチモーダルインタラクションと特徴量解析を包括的に研究し、自然言語で提供される説明に基づいてターゲットオブジェクトを特定・識別することを目的としています。

アフリカ水牛最適化(ABO)
この記事では、アフリカ水牛の特異な行動に着想を得て2015年に開発されたメタヒューリスティック手法、アフリカ水牛最適化(ABO)アルゴリズムを紹介します。アルゴリズムの実装プロセスと、複雑な問題の解決におけるその高い効率性について詳しく解説しており、最適化分野における有用なツールであることが示されています。

従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル
この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。

取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション
市場の状況を分析する際には、それを個別のセグメントに分割し、主要なトレンドを特定します。しかし、従来の分析手法は一つの側面に偏りがちで、全体像の適切な把握を妨げます。この記事では、複数のオブジェクトを選択できる手法を通じて、状況をより包括的かつ多層的に理解する方法を紹介します。

初級から中級まで:配列と文字列(III)
この記事では2つの側面について考察します。まず、標準ライブラリを使ってバイナリ値を8進数、10進数、16進数などの表現に変換する方法について説明します。次に、これまでに習得した知識を活用して、秘密のフレーズに基づいてパスワードの桁数をどのように決定できるかについて解説します。

リプレイシステムの開発(第68回):正しい時間を知る(I)
今日は、流動性が低い時間帯に、マウスポインタを使ってバーの残り時間を確認できるようにする作業を引き続き進めていきます。一見すると簡単そうに思えますが、実際にはこの作業には多くの困難が伴います。いくつかの障害を乗り越える必要があるため、このサブシリーズの最初のパートをしっかりと理解しておくことが、今後の内容を理解する上で非常に重要です。

経済予測:Pythonの可能性を探る
世界銀行の経済データは、将来の動向を予測するためにどのように活用できるのでしょうか。そして、AIモデルと経済学を組み合わせることで、どのようなことが可能になるのでしょうか。