MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
取引システムの構築(第1回):定量的なアプローチ

取引システムの構築(第1回):定量的なアプローチ

多くのトレーダーは短期的なパフォーマンスに基づいて戦略を評価し、利益を生むシステムであっても早い段階で手放してしまうことがよくあります。しかし、長期的な収益性は、最適化された勝率とリスクリワードレシオ(RRR: Reward-to-Risk Ratio)によって形成されるポジティブな期待値、そして規律あるポジションサイジングに依存しています。これらの原則は、バックテストの結果をもとにPythonでモンテカルロシミュレーションをおこなうことで検証することができ、戦略が時間の経過とともに堅牢であるか、もしくは破綻する可能性が高いかを評価するうえで役立ちます。
preview
MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント

MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント

Pythonのscheduleモジュールは、繰り返しタスクをスケジュールする簡単な方法を提供します。MQL5には組み込みの同等機能はありませんが、この記事ではMetaTrader 5でのタイムイベントの設定を容易にするために、類似のライブラリを実装します。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
preview
MQL5サービスからPythonアプリケーションへのMetaTraderティック情報アクセス(ソケット使用)

MQL5サービスからPythonアプリケーションへのMetaTraderティック情報アクセス(ソケット使用)

場合によっては、MQL5言語だけではすべてをプログラムできないことがあります。また、既存の高度なライブラリをMQL5に移植することは可能であっても、非常に時間がかかります。本記事では、MetaTraderのティック情報(Bid、Ask、時刻など)をMetaTraderサービスを経由してPythonアプリケーションに送信し、Windows OSへの依存を回避する方法を紹介します。
preview
プライスアクション分析ツールキットの開発(第33回):Candle Range Theory Tool

プライスアクション分析ツールキットの開発(第33回):Candle Range Theory Tool

MetaTrader 5向けのCandle-Range Theoryスイートで、市場の読みをアップグレードできます。これは完全にMQL5ネイティブなソリューションで、ローソク足をリアルタイムのボラティリティ情報に変換します。軽量なCRangePatternライブラリは、各ローソク足の真の値幅を適応型ATRと比較し、確定直後に分類します。CRTインジケーターは、その分類結果をチャート上に鮮明な色分けされた矩形や矢印として表示し、収束の進行、急騰・急落、全レンジ包み込みを瞬時に可視化します。
preview
MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード

MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード

本記事では、MQL5で動的なホログラフィックダッシュボードを作成し、RSIやボラティリティアラート、ソートオプションを使用して銘柄と時間足を監視します。さらに、パルスアニメーション、インタラクティブボタン、ホログラフィック効果を追加して、ツールを視覚的に魅力的で反応の良いものにします。
preview
MQL5入門(第19回):ウォルフ波動の自動検出

MQL5入門(第19回):ウォルフ波動の自動検出

本記事では、強気(上昇)および弱気(下降)のウォルフ波動パターンをプログラムで識別し、MQL5を使用して取引する方法を紹介します。ウォルフ波動構造をプログラムで検出し、それに基づいて取引の実行方法を詳しく解説します。これには、主要なスイングポイントの検出、パターンルールの検証、シグナルに基づくエキスパートアドバイザー(EA)の準備が含まれます。
preview
MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム

MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム

本記事では、ロンドン市場開場前のレンジブレイクアウトを検出し、任意の取引タイプおよびリスク設定に基づいてペンディング注文(指値・逆指値注文)を自動で発注する「ロンドンセッションブレイクアウトシステム」を開発します。トレーリングストップ、リスクリワード比率、最大ドローダウン制限、そしてリアルタイム監視と管理をおこなうためのコントロールパネルなどの機能も組み込みます。
preview
知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する

知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する

前回の記事では、オーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)のインディケーターの組み合わせを紹介しましたが、今回はこのペアリングを教師あり学習でどのように強化できるかを見ていきます。Awesome OscillatorとEnvelope Channelは、トレンドの把握とサポート/レジスタンスの補完的な組み合わせです。私たちの教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を使用し、ドット積カーネルとクロスタイムアテンションを活用してカーネルとチャネルのサイズを決定します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
preview
データサイエンスとML(第46回):PythonでN-BEATSを使った株式市場予測

データサイエンスとML(第46回):PythonでN-BEATSを使った株式市場予測

N-BEATSは、時系列予測のために設計された革新的なディープラーニングモデルです。このモデルは、ARIMAやPROPHET、VARなどの従来の時系列予測モデルを超えることを目指して公開されました。本記事では、このモデルについて説明し、株式市場の予測にどのように活用できるかを紹介します。
preview
古典的な戦略を再構築する(第14回):複数戦略分析

古典的な戦略を再構築する(第14回):複数戦略分析

本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。
preview
取引所価格のバイナリコードの分析(第2回):BIP39への変換とGPTモデルの記述

取引所価格のバイナリコードの分析(第2回):BIP39への変換とGPTモデルの記述

価格の動きを解読し続けます。では、バイナリ価格コードをBIP39に変換して得られる「市場辞典」の言語分析はどうでしょうか。本記事では、データ分析における革新的なアプローチを掘り下げ、現代の自然言語処理技術が市場言語にどのように応用できるかを考察します。
preview
時間進化移動アルゴリズム(TETA)

時間進化移動アルゴリズム(TETA)

これは私自身のアルゴリズムです。本記事では、並行宇宙や時間の流れの概念に着想を得た「時間進化移動アルゴリズム(TETA: Time Evolution Travel Algorithm)」を紹介します。本アルゴリズムの基本的な考え方は、従来の意味でのタイムトラベルは不可能であるものの、異なる現実に至る一連の出来事の順序を選択することができるという点にあります。
preview
強化学習と弱者淘汰を組み合わせた進化型取引アルゴリズム(ETARE)

強化学習と弱者淘汰を組み合わせた進化型取引アルゴリズム(ETARE)

この記事では、進化アルゴリズムと深層強化学習を組み合わせた、外国為替取引のための革新的な取引アルゴリズムを紹介します。このアルゴリズムは、非効率な個体を絶滅させるメカニズムを使用して取引戦略を最適化します。
preview
事後取引分析:ストラテジーテスターにおけるトレーリングストップと新しいストップレベルの選択

事後取引分析:ストラテジーテスターにおけるトレーリングストップと新しいストップレベルの選択

取引の質をさらに高めるため、今回はストラテジーテスターで完了済みの取引を分析するテーマを引き続き取り上げます。異なる種類のトレーリングストップを使用すると、既存の取引結果がどのように変化するかを見ていきましょう。
preview
初級から中級まで:テンプレートとtypename(IV)

初級から中級まで:テンプレートとtypename(IV)

本記事では、前回の記事の最後で提示した問題の解決方法について詳しく解説します。そのために、データunionのテンプレートを作成できるタイプのテンプレートを設計しようという試みがおこなわれました。
preview
Pythonの価格変動離散化手法

Pythonの価格変動離散化手法

Python + MQL5を使用した価格離散化手法を見ていきます。本記事では、バー生成に関する幅広い手法を実装したPythonライブラリの開発経験についご紹介します。クラシックなボリュームバーやレンジバーから、よりエキゾチックな練行足やカギ足といった手法までを網羅します。スリーラインブレイクローソク足やレンジバーの統計分析をおこないながら、価格を離散的に表現する新たな方法を探っていきます。
preview
MetaTrader 5での取引の視覚的な評価と調整

MetaTrader 5での取引の視覚的な評価と調整

ストラテジーテスターは、単に自動売買ロボットのパラメータを最適化するだけでなく、さらに幅広い活用が可能です。本記事では、口座の取引履歴を事後に評価し、ストラテジーテスター上でポジションのストップロスを変更することで取引の調整をおこなう方法を紹介します。
preview
循環単為生殖アルゴリズム(CPA)

循環単為生殖アルゴリズム(CPA)

本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。
preview
初級から中級まで:テンプレートとtypename(III)

初級から中級まで:テンプレートとtypename(III)

本記事では、トピックの第一部について解説します。この内容は初心者にとって理解がやや難しい部分があります。さらなる混乱を避けて正しく理解していただくために、説明を段階的に分けて進めます。本記事ではその第一段階に焦点を当てます。ただし、記事の最後では行き詰まりに見えるかもしれませんが、実際には次の記事でより理解しやすくなる状況への一歩を踏み出す形になります。
preview
アルゴリズム取引におけるニューロシンボリックシステム:シンボリックルールとニューラルネットワークを組み合わせる

アルゴリズム取引におけるニューロシンボリックシステム:シンボリックルールとニューラルネットワークを組み合わせる

本記事では、古典的なテクニカル分析とニューラルネットワークを組み合わせたハイブリッド型取引システムの開発経験について解説します。システムのアーキテクチャを、基本的なパターン分析やニューラルネットワーク構造から、実際の売買判断に至るメカニズムまで詳細に分析し、実際のコードや実務的な知見も共有します。
preview
学習中にニューロンを活性化する関数:高速収束の鍵は?

学習中にニューロンを活性化する関数:高速収束の鍵は?

本記事では、ニューラルネットワークの学習における異なる活性化関数と最適化アルゴリズムの相互作用に関する研究を紹介します。特に、古典的なADAMとその集団版であるADAMmを比較し、振動するACONやSnake関数を含む幅広い活性化関数での動作を検証します。最小構成のMLPアーキテクチャ(1-1-1)と単一の学習例を用いることで、活性化関数が最適化に与える影響を他の要因から切り離して観察します。本記事では、活性化関数の境界を利用したネットワーク重みの管理と重み反射機構を提案し、学習における飽和や停滞の問題を回避できることを示します。
preview
量子コンピューティングと取引:価格予測への新たなアプローチ

量子コンピューティングと取引:価格予測への新たなアプローチ

本記事では、量子コンピューティングを用いて金融市場における価格変動を予測するための革新的なアプローチについて説明します。主な焦点は、量子位相推定(QPE: Quantum Phase Estimation)アルゴリズムを適用して価格パターンのプロトタイプを見つけることであり、これによりトレーダーは市場データの分析を大幅に高速化できるようになります。
preview
取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点

取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点

本記事では、価格変動をバイナリコードに変換するという新しい視点からテクニカル分析にアプローチします。筆者は、シンプルな値動きから複雑な市場パターンに至るまで、あらゆる市場行動を「0」と「1」のシーケンスとして符号化できることを示します。
preview
市場シミュレーション(第3回):パフォーマンスの問題

市場シミュレーション(第3回):パフォーマンスの問題

時には一歩下がってから前進する必要があります。本記事では、マウスインジケーターおよびChart Tradeインジケーターが正常に動作するようにするために必要なすべての変更についてご紹介します。さらにおまけとして、今後広く使用される他のヘッダーファイルにおける変更についても触れます。
preview
取引におけるニューラルネットワーク:層状メモリを持つエージェント

取引におけるニューラルネットワーク:層状メモリを持つエージェント

層状メモリアプローチは、人間の認知プロセスを模倣することで、複雑な金融データの処理や新しいシグナルへの適応を可能にし、動的な市場における投資判断の有効性を向上させます。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

前回の記事では、Multitask-Stockformerフレームワークを検討しました。このフレームワークは、ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたものです。本記事では、このフレームワークのアルゴリズムをさらに実装し、実際の過去データを用いてその有効性を評価していきます。
preview
プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出

プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出

本記事では、Pythonでローソク足パターンを手動で検出していた前回の方法から一歩進み、TA-Libを活用した自動検出手法へと移行します。TA-Libは、60種類以上の異なるローソク足パターンを認識できる強力なテクニカル分析ライブラリです。これらのパターンは、市場の反転やトレンド継続の可能性を読み取る上で有用なインサイトを提供します。ぜひ最後までお読みください。
preview
取引における多項式モデル

取引における多項式モデル

本記事では、直交多項式について説明します。直交多項式を活用することで、より正確で効果的な市場分析が可能になり、トレーダーはより多くの情報に基づいた意思決定をおこなうことができるようになります。
preview
ビッグバンビッグクランチ(BBBC)アルゴリズム

ビッグバンビッグクランチ(BBBC)アルゴリズム

本記事では、ビッグバンビッグクランチ(BBBC)法について紹介します。本手法は2つの主要な段階から構成されます。すなわち、ランダムな点を周期的に生成する段階と、それらを最適解へ圧縮する段階です。本アプローチは探索と精緻化を組み合わせることで、段階的により良好な解を導出し、新たな最適化の可能性を開くことが可能です。
preview
3Dバーによるトレンド強度・方向指標

3Dバーによるトレンド強度・方向指標

市場マイクロストラクチャの3次元可視化とテンソル分析に基づく、新しい市場トレンド分析のアプローチを検討します。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル

ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたフレームワークを紹介します。本フレームワークは、ボラティリティの高い市場環境における予測の応答性および精度の向上を目的としています。ウェーブレット変換により、資産収益率を高周波成分と低周波成分に分解し、長期的な市場トレンドと短期的な変動の双方を的確に捉えることが可能となります。
preview
市場シミュレーション(第2回):両建て注文(II)

市場シミュレーション(第2回):両建て注文(II)

前回の記事とは異なり、今回はエキスパートアドバイザー(EA)を用いて選択オプションをテストしてみます。最終的な解決策ではありませんが、現時点では十分な内容となっています。本記事を通じて、1つの実現可能な解決方法の実装手順を理解できます。
preview
取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(最終回)

取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(最終回)

予測符号化と強化学習アルゴリズムを組み合わせた金融時系列分析用のハイブリッド取引システム「StockFormer」の検討を引き続きおこないます。本システムは、複雑なパターンや資産間の相互依存関係を捉えることを可能にするDiversified Multi-Head Attention (DMH-Attn)機構を備えた、3つのTransformerブランチに基づいています。前回は、フレームワークの理論的な側面に触れ、DMH-Attn機構を実装しました。今回は、モデルのアーキテクチャと学習について解説します。
preview
ブラックホールアルゴリズム(BHA)

ブラックホールアルゴリズム(BHA)

ブラックホールアルゴリズム(BHA)は、ブラックホールの重力原理に着想を得た最適化アルゴリズムです。本記事では、BHAがどのようにして優れた解を引き寄せ、局所最適解への陥り込みを回避するのか、そしてなぜこのアルゴリズムが複雑な問題を解くための強力なツールとなっているのかを解説します。シンプルな発想がいかにして最適化の世界で大きな成果を生み出すのかを見ていきましょう。
preview
PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成

PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成

Pythonによるデータ分析とMQL5による取引執行を組み合わせたモジュール型の取引システムを開発します。このシステムは、4つの独立したモジュールによって市場の異なる側面(ボリューム、アービトラージ、経済、リスク)を並行して監視します。ランダムフォレストを400本の決定木で構成したモデルを用いて市場データを分析します。特に本システムでは、リスク管理に重点を置いています。どれほど高度なアルゴリズムであっても、適切なリスク管理がなければ意味がありません。
preview
取引におけるトレンド基準

取引におけるトレンド基準

トレンドは多くの取引戦略において重要な要素です。本記事では、トレンドを識別するために使用されるいくつかのツールとその特性にを見ていきます。トレンドを理解し正しく解釈することは、取引効率を大幅に高め、リスクを最小限に抑えることにつながります。
preview
人工部族アルゴリズム(ATA)

人工部族アルゴリズム(ATA)

本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
preview
市場シミュレーション(第1回):両建て注文(I)

市場シミュレーション(第1回):両建て注文(I)

本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
preview
取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(StockFormer)

取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(StockFormer)

本記事では、予測符号化と強化学習(RL)アルゴリズムを組み合わせたハイブリッド取引システム「StockFormer」について解説します。本フレームワークは、統合型のDiversified Multi-Head Attention (DMH-Attn)機構を備えた3つのTransformerブランチを使用しています。DMH-Attnは、従来のAttentionモジュールを改良したもので、マルチヘッドのFeed-Forwardブロックを組み込むことにより、異なるサブスペースにわたる多様な時系列パターンを捉えることが可能です。