MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
株式市場における非線形回帰モデル

株式市場における非線形回帰モデル

株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。
preview
算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。
preview
多通貨エキスパートアドバイザーの開発(第20回):自動プロジェクト最適化段階のコンベアの配置(I)

多通貨エキスパートアドバイザーの開発(第20回):自動プロジェクト最適化段階のコンベアの配置(I)

私たちはすでに、自動最適化を支援するいくつかのコンポーネントを作成しています。作成の過程では、最小限の動作するコードを作るところからリファクタリングを経て、改善されたコードを得るという従来の循環的な構造に従いました。そろそろ、私たちが作成しているシステムの重要なコンポーネントでもあるデータベースの整理を始める時期です。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
preview
原子軌道探索(AOS)アルゴリズム:改良版

原子軌道探索(AOS)アルゴリズム:改良版

第2部では、AOS (Atomic Orbital Search)アルゴリズムの改良版の開発を続け、特定の演算子に注目して効率性と適応性の向上を図ります。アルゴリズムの基礎とメカニズムを分析した後、複雑な解探索空間を解析する能力を高めるための性能向上のアイデアについて議論し、最適化ツールとしての機能を拡張する新しいアプローチを提案します。
preview
取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

LSEAttentionフレームワークは、Transformerアーキテクチャの改善を提供します。この手法は、特に長期の多変量時系列予測のために設計されました。提案されたアプローチは、従来のTransformerでよく遭遇するエントロピーの崩壊や学習の不安定性の問題を解決するために応用可能です。
preview
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
preview
Numbaを使用したPythonの高速取引ストラテジーテスター

Numbaを使用したPythonの高速取引ストラテジーテスター

この記事では、Numbaを使った機械学習モデルのための高速ストラテジーテスターを実装しています。純粋なPythonのストラテジーテスターと比べて50倍速く動作します。このライブラリを使って特にループを含む数学計算を高速化することを推奨しています
preview
取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)

取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)

HypDiffフレームワークで提案されているように、双曲潜在空間における初期データのエンコーディングに異方性拡散プロセスを用いることで、現在の市場状況におけるトポロジー的特徴を保持しやすくなり、分析の質を向上させることができます。前回の記事では、提案されたアプローチの実装をMQL5を用いて開始しました。今回はその作業を継続し、論理的な完結に向けて進めていきます。
preview
取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)

取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)

この記事では、異方性拡散プロセスを用いた双曲潜在空間における初期データのエンコーディング手法について検討します。これにより、現在の市場状況におけるトポロジー的特徴をより正確に保持でき、分析の質が向上します。
preview
取引におけるニューラルネットワーク:方向性拡散モデル(DDM)

取引におけるニューラルネットワーク:方向性拡散モデル(DDM)

本稿では、前向き拡散過程においてデータ依存的な異方性および方向性を持つノイズを活用するDirectional Diffusion Models(DDM、方向性拡散モデル)について議論し、意味のあるグラフ表現を捉える手法を紹介します。
preview
高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装

高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装

この記事では、オーダーブロックのミティゲーションを検出し、描画し、アラートを発するインジケーターの作り方を学びます。また、チャート上でこれらのブロックを正確に特定する方法や、正確なアラートの設定方法、価格の動きをより理解しやすくするために矩形で位置を可視化する方法についても詳しく解説します。このインジケーターは、スマートマネーコンセプトやインナーサークルトレーダーの手法を用いるトレーダーにとって重要なツールとなるでしょう。
preview
取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。
preview
取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

本連載の前回の記事では、Atom-Motif Contrastive Transformer (AMCT)フレームワークについて取り上げました。これは、対照学習を用いて、基本要素から複雑な構造に至るまでのあらゆるレベルで重要なパターンを発見することを目的とした手法です。この記事では、MQL5を用いたAMCTアプローチの実装を引き続き解説していきます。
preview
多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成

多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成

これまでは、標準のストラテジーテスター内で最適化タスクを順に自動実行することだけを考えてきました。しかし、もしそれらの実行の合間に、別の手段で得られたデータを処理したいとしたらどうなるでしょうか。ここでは、Pythonで記述されたプログラムによって新たな最適化ステージを作成する機能の追加を試みます。
preview
取引におけるニューラルネットワーク:対照パターンTransformer

取引におけるニューラルネットワーク:対照パターンTransformer

Contrastive Transformerは、個々のローソク足のレベルと、全体のパターンに基づいて市場を分析するよう設計されています。これにより、市場トレンドのモデリングの質が向上します。さらに、ローソク足とパターンの表現を整合させるために対照学習を用いることで、自己調整が促され、予測の精度が高まります。
preview
取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

モデルを使用して市場の状況を分析する場合、主にローソク足に注目します。しかし、ローソク足パターンが将来の価格変動を予測するのに役立つことは長い間知られていました。この記事では、これら両方のアプローチを統合できる方法について説明します。
preview
取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

自己教師あり学習は、ラベル付けされていない大量のデータを分析する効果的な手段となり得ます。この手法の効率性は、モデルが金融市場特有の特徴に適応することで実現され、従来手法の有効性も向上します。本記事では、入力間の相対的な依存関係や関係性を考慮した新しいAttention(注意)機構を紹介します。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション

取引におけるニューラルネットワーク:制御されたセグメンテーション

この記事では、複雑なマルチモーダルインタラクション分析と特徴量理解の方法について説明します。
preview
プライスアクション分析ツールキットの開発(第21回):Market Structure Flip Detector Tool

プライスアクション分析ツールキットの開発(第21回):Market Structure Flip Detector Tool

The Market Structure Flip Detectorエキスパートアドバイザー(EA)は、市場センチメントの変化を常に監視する頼れるパートナーとして機能します。ATR (Average True Range)に基づく閾値を活用することで、構造の反転を的確に検出し、各高値切り下げおよび安値切り上げを明確なインジケーターで表示します。MQL5の高速な実行性能と柔軟なAPIにより、このツールはリアルタイム分析を可能にし、最適な視認性を保つよう表示を調整しながら、反転の回数やタイミングをモニターできるライブダッシュボードも提供します。さらに、カスタマイズ可能なサウンド通知やプッシュ通知により、重要なシグナルを確実に受け取ることができ、シンプルな入力と補助ルーチンがどのように価格変動を実用的な戦略へと変換するかを実感できます。
preview
取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成

取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成

本記事では、取引チャート上で高品質な画像スケーリングを実現するために、双三次補間(バイキュービック補間)を使用した動的なMQL5グラフィカルインターフェイスについて解説します。カスタムオフセットによる動的な中央配置やコーナーアンカーなど、柔軟なポジショニングオプションも紹介します。
preview
MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション

MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション

本記事では、MQL5を用いて「ミッドナイトレンジブレイクアウト + Break of Structure (BoS)」戦略を自動化し、ブレイクアウトの検出および取引実行のコードを詳細に解説します。エントリー、ストップ、利益確定のためのリスクパラメータを正確に定義し、実際の取引に活用できるようバックテストおよび最適化もおこないます。
preview
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
preview
MQL5での取引戦略の自動化(第15回):プライスアクションハーモニックCypherパターンの可視化

MQL5での取引戦略の自動化(第15回):プライスアクションハーモニックCypherパターンの可視化

この記事では、CypherハーモニックパターンのMQL5における自動化について探究し、その検出方法とMetaTrader 5チャート上での可視化を詳しく解説します。スイングポイントを特定し、フィボナッチに基づいたパターンを検証し、明確な視覚的注釈とともに取引を実行するエキスパートアドバイザー(EA)を実装します。記事の最後では、効果的な取引のためのバックテストおよび最適化方法についても説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第60回):移動平均とストキャスティクスパターンを用いた推論(ワッサースタインVAE)

知っておくべきMQL5ウィザードのテクニック(第60回):移動平均とストキャスティクスパターンを用いた推論(ワッサースタインVAE)

MA(移動平均)とストキャスティクスの補完的な組み合わせに着目し、教師あり学習および強化学習を経た後の段階において、推論が果たしうる役割を検証します。推論にはさまざまなアプローチが存在しますが、この記事では変分オートエンコーダ(VAE: Variational Auto-Encoder)を用いる方法を採用します。まずはPythonでこのアプローチを探求し、その後、訓練済みモデルをONNX形式でエクスポートし、MetaTraderのウィザードで構築したエキスパートアドバイザー(EA)で活用します。
preview
データサイエンスとML(第36回):偏った金融市場への対処

データサイエンスとML(第36回):偏った金融市場への対処

金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。
preview
MQL5でのカスタム市場レジーム検出システムの構築(第2回):エキスパートアドバイザー

MQL5でのカスタム市場レジーム検出システムの構築(第2回):エキスパートアドバイザー

この記事では、第1回で紹介したレジーム検出器を用いて、適応型のエキスパートアドバイザー(EA)、MarketRegimeEAを構築する方法を詳しく解説しています。このEAは、トレンド相場、レンジ相場、またはボラティリティの高い相場に応じて、取引戦略やリスクパラメータを自動的に切り替えます。実用的な最適化、移行時の処理、多時間枠インジケーターも含まれています。
preview
MQL5でのカスタム市場レジーム検出システムの構築(第1回):インジケーター

MQL5でのカスタム市場レジーム検出システムの構築(第1回):インジケーター

この記事では、自己相関やボラティリティなどの統計手法を用いたMQL5市場レジーム検出システム(Market Regime Detection System)の作成方法を詳述しています。トレンド相場、レンジ相場、ボラティリティの高い相場を分類するためのクラスや、カスタムインジケーターのコードも提供しています。
preview
オープニングレンジブレイクアウト日中取引戦略の解読

オープニングレンジブレイクアウト日中取引戦略の解読

オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。
preview
ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ポートフォリオの分散化と最適化とは、複数の資産に戦略的に投資を分散しながら、リスク調整後のパフォーマンス指標に基づいてリターンを最大化する理想的な資産配分を選定する手法です。
preview
手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する

手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する

この記事では、ストラテジーテスターでの手動バックテストを簡単におこなうための、カスタムMQL5ツールキットの設計について紹介します。設計と実装に焦点を当て、特にインタラクティブな取引操作の仕組みについて詳しく解説します。その後、このツールキットを使って、戦略を効果的にテストする方法を実演します。
preview
プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer

プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer

すべてのプライスアクショントレーダーは、トレンドを確認し、転換点や継続の可能性があるレベルを見つけるために、トレンドラインを手動で使用します。本連載では、市場分析を簡単にするために、傾斜トレンドラインを描画することに特化したツールを紹介します。このツールは、トレーダーが効果的なプライスアクション評価に不可欠な主要トレンドとレベルを明確に示すことで、分析プロセスを簡素化します。
preview
MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略

MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略

この記事では、MACDおよびRSIインジケーターと統計的手法を組み合わせた取引レイヤリング戦略を紹介します。このアプローチは、MQL5による自動売買において、ポジションを動的にスケーリングすることを目的としています。カスケード構造による戦略のアーキテクチャを解説し、主要なコードセグメントを通じて実装方法を詳述します。さらに、パフォーマンスを最適化するためのバックテスト手順についても案内します。最後に、この戦略が持つ可能性と、今後の自動売買戦略への発展性について考察します。
preview
MQL5入門(第15回):初心者のためのカスタムインジケーター作成ガイド(IV)

MQL5入門(第15回):初心者のためのカスタムインジケーター作成ガイド(IV)

この記事では、MQL5でプライスアクションインジケーターを構築する方法を学びます。具体的には、トレンド分析において重要なポイントである、安値(L)、高値(H)、安値切り上げ(HL)、高値更新(HH)、安値更新(LL)、高値切り下げ(LH)といった構造の把握に焦点を当てます。また、プレミアムゾーンとディスカウントゾーンの識別、50%リトレースメントレベルの表示、リスクリワード比に基づく利益目標の計算についても解説します。さらに、トレンド構造に基づいてエントリーポイント、ストップロス(SL)、テイクプロフィット(TP)の設定方法も扱います。
preview
ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する

ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する

本記事では、ポートフォリオレベルの統計的アービトラージの基本的な概念を紹介します。数学の深い知識がない読者にも理解しやすく説明し、実際の運用を始めるためのコンセプトフレームワークを提案することを目的としています。記事には、動作するエキスパートアドバイザー(EA)と、1年間のバックテストに関する注記、再現用の設定ファイル(.iniファイル)も含まれています。
preview
MQL5における高度なメモリ管理と最適化テクニック

MQL5における高度なメモリ管理と最適化テクニック

MQL5の取引システムにおけるメモリ使用を最適化するための実践的なテクニックを紹介します。効率的で安定性が高く、高速に動作するエキスパートアドバイザー(EA)やインジケーターの構築方法を学びましょう。MQL5でのメモリの仕組み、システムを遅くしたり不安定にしたりする一般的な落とし穴、そして、最も重要なこととして、それらを解決する方法について詳しく解説します。
preview
知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

MAとストキャスティクスを使用したDDPGに関する前回の記事に引き続き、今回は、DDPGの実装に欠かせない他の重要な強化学習クラスを検証していきます。主にPythonでコーディングしていますが、最終的には訓練済みネットワークをONNX形式でエクスポートし、MQL5に組み込んでウィザードで構築したエキスパートアドバイザー(EA)のリソースとして統合します。
preview
MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築

MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築

この記事では、三尊天井(Head and Shoulders)パターンの検出と売買をMQL5で自動化します。その構造を分析し、検出および取引をおこなうエキスパートアドバイザー(EA)を実装し、バックテストでその結果を検証します。このプロセスを通じて、改良の余地を残しつつも実用的な取引アルゴリズムが明らかになります。
preview
デイトレードLarry Connors RSI2平均回帰戦略

デイトレードLarry Connors RSI2平均回帰戦略

Larry Connorsは著名なトレーダー兼著者であり、特に2期間RSI (RSI2)などのクオンツトレーディングや戦略で知られています。RSI2は短期的な買われすぎ・売られすぎの市場状況を識別するのに役立ちます。本記事では、まず私たちの研究の動機を説明し、その後Connorsの代表的な3つの戦略をMQL5で再現し、S&P 500指数CFDのデイトレードに適用していきます。
preview
MQL5入門(第14回):初心者のためのカスタムインジケーター作成ガイド(III)

MQL5入門(第14回):初心者のためのカスタムインジケーター作成ガイド(III)

MQL5でチャートオブジェクトを使ってハーモニックパターンインジケーターを構築する方法を学びましょう。スイングポイントの検出、フィボナッチリトレースメントの適用、そしてパターン認識の自動化について解説します。