MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
プライスアクション分析ツールキットの開発(第24回):プライスアクション定量分析ツール

プライスアクション分析ツールキットの開発(第24回):プライスアクション定量分析ツール

ローソク足のパターンは、潜在的な市場の動きに関する貴重な洞察を提供します。単一のローソク足でも、現在のトレンドの継続を示すものもあれば、価格の動きの中での位置によって反転を示唆するものもあります。本記事では、4つの主要なローソク足形成を自動で識別するエキスパートアドバイザー(EA)を紹介します。次のセクションを参照して、このツールがどのようにプライスアクション分析を強化できるかを学んでください。
preview
知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する

知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する

FrAMAインジケーターとForce Indexオシレーターは、トレンドと出来高のツールであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事では、このペアを紹介し、機械学習の適用可能性を検討しました。畳み込みニューラルネットワークを使用しており、内積カーネルを利用して、これらのインジケーターの入力に基づいた予測をおこないます。これは、MQL5ウィザードと連携してEAを組み立てるカスタムシグナルクラスファイルで実行されます。
preview
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて

データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて

ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
preview
データサイエンスとML(第41回):YOLOv8を用いた外国為替および株式市場のパターン検出

データサイエンスとML(第41回):YOLOv8を用いた外国為替および株式市場のパターン検出

金融市場でパターンを検出するのは、チャート上の内容を確認する必要があるため困難ですが、これは画像の制限によりMQL5では実行が困難です。この記事では、最小限の労力でチャート上のパターンを検出するのに役立つ、Pythonで作成された適切なモデルについて説明します。
preview
プライスアクション分析ツールキットの開発(第23回):Currency Strength Meter

プライスアクション分析ツールキットの開発(第23回):Currency Strength Meter

通貨ペアの方向性を本当に決定しているのは何でしょうか。それは各通貨自体の強さです。本記事では、通貨の強さを、その通貨が含まれるすべてのペアを順に分析することで測定します。この洞察により、各通貨ペアが相対的な強さに基づいてどのように動くかを予測することができます。詳しくは本稿をご覧ください。
preview
MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化

MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化

本記事では、直感的なニュースナビゲーションを実現する動的なスクロールバーを追加してMQL5経済指標カレンダーを強化します。シームレスなイベント表示と効率的な更新を保証します。テストを通じて、レスポンシブなスクロールバーと洗練されたダッシュボードを検証します。
preview
MQL5における高度な注文執行アルゴリズム:TWAP、VWAP、アイスバーグ注文

MQL5における高度な注文執行アルゴリズム:TWAP、VWAP、アイスバーグ注文

MQL5フレームワークで、機関投資家向けの高度な執行アルゴリズム(TWAP、VWAP、アイスバーグ注文)を小口トレーダー向けに提供します。統合された実行マネージャーとパフォーマンスアナライザーを用いて、注文の分割(スライシング)や分析をよりスムーズかつ正確に行える環境を提供します。
preview
MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ

MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ

本記事では、スマートなイベントフィルタリングと選択的ログ出力を用いて経済カレンダーを最適化し、ライブおよびオフラインモードでのバックテストをより高速かつ明確に実施できるようにします。イベント処理を効率化し、ログを重要な取引やダッシュボードイベントに絞ることで、戦略の可視化を向上させます。これらの改善により、ニュース駆動型取引戦略のテストと改善をシームレスにおこなえるようになります。
preview
MQL5での取引戦略の自動化(第17回):ダイナミックダッシュボードで実践するグリッドマーチンゲールスキャルピング戦略

MQL5での取引戦略の自動化(第17回):ダイナミックダッシュボードで実践するグリッドマーチンゲールスキャルピング戦略

本記事では、グリッドマーチンゲールスキャルピング戦略(Grid-Mart Scalping Strategy)を探究し、MQL5による自動化と、リアルタイム取引インサイトを提供するダイナミックダッシュボードの構築をおこないます。本戦略のグリッド型マーチンゲールロジックとリスク管理機能を詳述し、さらに堅牢なパフォーマンスのためのバックテストおよび実運用展開についても案内します。
preview
知っておくべきMQL5ウィザードのテクニック(第65回):FrAMAとForce Indexのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第65回):FrAMAとForce Indexのパターンを活用する

フラクタル適応移動平均(FrAMA)とForce Indexオシレーターは、MQL5エキスパートアドバイザー(EA)内で組み合わせて使用できるもう1つのインジケーターのペアです。FrAMAはトレンドフォロー型インジケーターですが、Force Indexはボリュームベースのオシレーターであるため、これら2つのインジケーターは互いに少し補完し合います。いつものように、MQL5ウィザードを使用して、これら2つの可能性を迅速に調査します。
preview
MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入

MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入

この記事では、取引アシスタントツール(Trade Assistant Tool)をアップグレードし、ドラッグ&ドロップ可能なパネル機能やホバー効果を追加して、インターフェースをより直感的で応答性の高いものにします。ツールを改良してリアルタイムの注文設定を検証し、市場価格に対して正確な取引構成が可能となるようにします。また、これらの改善をバックテストし、その信頼性を確認します。
preview
MQL5取引ツール(第1回):インタラクティブで視覚的なペンディングオーダー取引アシスタントツールの構築

MQL5取引ツール(第1回):インタラクティブで視覚的なペンディングオーダー取引アシスタントツールの構築

この記事では、FX取引におけるペンディングオーダーの設置を簡素化するために開発した、MQL5によるインタラクティブ取引アシスタントツール(Trade Assistant Tool)について紹介します。まず概念設計を説明し、チャート上でエントリー、ストップロス、テイクプロフィット水準を視覚的に設定できるユーザーフレンドリーなGUIに焦点を当てます。さらに、MQL5での実装およびバックテストのプロセスを詳述し、このツールの信頼性を確認します。そして、後続のパートで発展的な機能を追加するための基盤を整えます。
preview
知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。パターンごとに何が役に立つのか、そして何を避けることができるのかを調べます。いつものように、ウィザードで組み立てられたEAと、エキスパートシグナルクラスに組み込まれているパターン使用関数を使用しています。
preview
知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する

ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事に続き、今回は開発済みモデルの運用中の学習や更新を、強化学習を用いてどのように実現できるかを検討します。この記事で使用するアルゴリズムは、本連載ではまだ扱っていない「TRPO(Trust Region Policy Optimization、信頼領域方策最適化)」として知られる手法です。また、MQL5ウィザードによるEAの組み立ては、モデルのテストをより迅速におこなえるだけでなく、異なるシグナルタイプで配布し検証できる形でセットアップできる点も利点です。
preview
知っておくべきMQL5ウィザードのテクニック(第61回):教師あり学習でADXとCCIのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第61回):教師あり学習でADXとCCIのパターンを活用する

ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。今回は、機械学習の主要な3つの学習モードすべてを活用して、どのように体系化できるかを見ていきます。ウィザードによって組み立てられたEAを使用することで、これら2つのインジケーターが示すパターンを評価することが可能になり、まずは教師あり学習をこれらのパターンにどのように適用できるかを検討します。
preview
汎用MLP近似器に基づくエキスパートアドバイザー

汎用MLP近似器に基づくエキスパートアドバイザー

この記事では、機械学習の深い知識がなくても利用できる、取引EAでのニューラルネットワークの簡単でアクセスしやすい使用方法を紹介しています。この方法では、目的関数の正規化を省略できるほか、「重みの爆発」や「収束停止」といった問題を解消し、直感的な学習と結果の視覚的な管理を可能にしています。
preview
外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合

外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合

FXにおけるポートフォリオ取引はどのように機能するのでしょうか。マーコウィッツのポートフォリオ理論による資産配分最適化と、VaRモデルによるリスク最適化はどのように統合できるのでしょうか。ポートフォリオ理論に基づいたコードを作成し、一方では低リスクを確保し、もう一方では受け入れ可能な長期的収益性を得ることを試みます。
preview
リプレイシステムの開発(第76回):新しいChart Trade(III)

リプレイシステムの開発(第76回):新しいChart Trade(III)

この記事では、前回の記事で省略されていたDispatchMessageのコードがどのように動作するのかを見ていきます。さらに、次回の記事のテーマについても紹介します。そのため、次のトピックに進む前に、このコードの仕組みを理解しておくことが重要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
preview
周期と取引

周期と取引

この記事は、取引における周期の活用についてです。周期モデルに基づいた取引戦略の構築を考えてみます。
preview
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)

前回の記事では、PSformerフレームワークの理論的側面について議論しました。このフレームワークは、従来のTransformerアーキテクチャに、パラメータ共有(PS)メカニズムと時空間Segment Attention (SegAtt)という2つの主要な革新をもたらします。本稿では、前回に引き続き、提案された手法をMQL5を用いて実装する作業について説明します。
preview
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)

この記事では、新しいPSformerフレームワークを紹介します。これは、従来のTransformerアーキテクチャを多変量時系列予測の問題に適応させたものです。本フレームワークは、パラメータ共有(PS)機構とSegment Attention機構(SegAtt)の2つの主要な革新に基づいています。
preview
株式市場における非線形回帰モデル

株式市場における非線形回帰モデル

株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。
preview
算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。
preview
多通貨エキスパートアドバイザーの開発(第20回):自動プロジェクト最適化段階のコンベアの配置(I)

多通貨エキスパートアドバイザーの開発(第20回):自動プロジェクト最適化段階のコンベアの配置(I)

私たちはすでに、自動最適化を支援するいくつかのコンポーネントを作成しています。作成の過程では、最小限の動作するコードを作るところからリファクタリングを経て、改善されたコードを得るという従来の循環的な構造に従いました。そろそろ、私たちが作成しているシステムの重要なコンポーネントでもあるデータベースの整理を始める時期です。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
preview
原子軌道探索(AOS)アルゴリズム:改良版

原子軌道探索(AOS)アルゴリズム:改良版

第2部では、AOS (Atomic Orbital Search)アルゴリズムの改良版の開発を続け、特定の演算子に注目して効率性と適応性の向上を図ります。アルゴリズムの基礎とメカニズムを分析した後、複雑な解探索空間を解析する能力を高めるための性能向上のアイデアについて議論し、最適化ツールとしての機能を拡張する新しいアプローチを提案します。
preview
取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

LSEAttentionフレームワークは、Transformerアーキテクチャの改善を提供します。この手法は、特に長期の多変量時系列予測のために設計されました。提案されたアプローチは、従来のTransformerでよく遭遇するエントロピーの崩壊や学習の不安定性の問題を解決するために応用可能です。
preview
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
preview
Numbaを使用したPythonの高速取引ストラテジーテスター

Numbaを使用したPythonの高速取引ストラテジーテスター

この記事では、Numbaを使った機械学習モデルのための高速ストラテジーテスターを実装しています。純粋なPythonのストラテジーテスターと比べて50倍速く動作します。このライブラリを使って特にループを含む数学計算を高速化することを推奨しています
preview
取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)

取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)

HypDiffフレームワークで提案されているように、双曲潜在空間における初期データのエンコーディングに異方性拡散プロセスを用いることで、現在の市場状況におけるトポロジー的特徴を保持しやすくなり、分析の質を向上させることができます。前回の記事では、提案されたアプローチの実装をMQL5を用いて開始しました。今回はその作業を継続し、論理的な完結に向けて進めていきます。
preview
取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)

取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)

この記事では、異方性拡散プロセスを用いた双曲潜在空間における初期データのエンコーディング手法について検討します。これにより、現在の市場状況におけるトポロジー的特徴をより正確に保持でき、分析の質が向上します。
preview
取引におけるニューラルネットワーク:方向性拡散モデル(DDM)

取引におけるニューラルネットワーク:方向性拡散モデル(DDM)

本稿では、前向き拡散過程においてデータ依存的な異方性および方向性を持つノイズを活用するDirectional Diffusion Models(DDM、方向性拡散モデル)について議論し、意味のあるグラフ表現を捉える手法を紹介します。
preview
高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装

高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装

この記事では、オーダーブロックのミティゲーションを検出し、描画し、アラートを発するインジケーターの作り方を学びます。また、チャート上でこれらのブロックを正確に特定する方法や、正確なアラートの設定方法、価格の動きをより理解しやすくするために矩形で位置を可視化する方法についても詳しく解説します。このインジケーターは、スマートマネーコンセプトやインナーサークルトレーダーの手法を用いるトレーダーにとって重要なツールとなるでしょう。
preview
取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。
preview
取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

本連載の前回の記事では、Atom-Motif Contrastive Transformer (AMCT)フレームワークについて取り上げました。これは、対照学習を用いて、基本要素から複雑な構造に至るまでのあらゆるレベルで重要なパターンを発見することを目的とした手法です。この記事では、MQL5を用いたAMCTアプローチの実装を引き続き解説していきます。
preview
多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成

多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成

これまでは、標準のストラテジーテスター内で最適化タスクを順に自動実行することだけを考えてきました。しかし、もしそれらの実行の合間に、別の手段で得られたデータを処理したいとしたらどうなるでしょうか。ここでは、Pythonで記述されたプログラムによって新たな最適化ステージを作成する機能の追加を試みます。
preview
取引におけるニューラルネットワーク:対照パターンTransformer

取引におけるニューラルネットワーク:対照パターンTransformer

Contrastive Transformerは、個々のローソク足のレベルと、全体のパターンに基づいて市場を分析するよう設計されています。これにより、市場トレンドのモデリングの質が向上します。さらに、ローソク足とパターンの表現を整合させるために対照学習を用いることで、自己調整が促され、予測の精度が高まります。
preview
取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

モデルを使用して市場の状況を分析する場合、主にローソク足に注目します。しかし、ローソク足パターンが将来の価格変動を予測するのに役立つことは長い間知られていました。この記事では、これら両方のアプローチを統合できる方法について説明します。
preview
取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

自己教師あり学習は、ラベル付けされていない大量のデータを分析する効果的な手段となり得ます。この手法の効率性は、モデルが金融市場特有の特徴に適応することで実現され、従来手法の有効性も向上します。本記事では、入力間の相対的な依存関係や関係性を考慮した新しいAttention(注意)機構を紹介します。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション

取引におけるニューラルネットワーク:制御されたセグメンテーション

この記事では、複雑なマルチモーダルインタラクション分析と特徴量理解の方法について説明します。