Find us on Twitter!
Join our fan page
Join our fan page
Напиши статью
и мы заплатим за нее 200 USD!
и мы заплатим за нее 200 USD!
Скачай MetaTrader 5 с новыми возможностями автотрейдинга

Теория категорий в MQL5 (Часть 15): Функторы с графами
Статья продолжает серию о реализации теории категорий в MQL5, рассматривая функторы как мост между графами и множеством. Мы вновь обратимся к календарным данным и, несмотря на их ограничения в использовании тестера стратегий, обоснуем использование функторов в прогнозировании волатильности с помощью корреляции.

Популяционные алгоритмы оптимизации: Дифференциальная эволюция (Differential Evolution, DE)
В этой статье поговорим об алгоритме, который демонстрирует самые противоречивые результаты из всех рассмотренных ранее, алгоритм дифференциальной эволюции (DE).

Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)
В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.

Разработка системы репликации - Моделирование рынка (Часть 23): ФОРЕКС (IV)
Теперь создание происходит в той же точке, где мы преобразовывали тики в бары. Таким образом, если в процессе преобразования что-то пойдет не так, мы сразу же заметим ошибку. Это связано с тем, что тот же код, который размещает на графике 1-минутные бары при быстрой перемотке, также используется для системы позиционирования и для размещения баров при обычной перемотке. Другими словами, код, который отвечает за эту задачу, больше нигде не дублируется. Таким образом, мы получаем гораздо более совершенную систему как для поддержания, так и для улучшения.

Популяционные алгоритмы оптимизации: Алгоритм оптимизации спиральной динамики (Spiral Dynamics Optimization, SDO)
В статье представлен алгоритм оптимизации, основанный на закономерностях построения спиральных траекторий в природе, таких как раковины моллюсков - алгоритм оптимизации спиральной динамики, SDO. Алгоритм, предложенный авторами, был мной основательно переосмыслен и модифицирован, в статье будет рассмотрено, почему эти изменения были необходимы.

Разработка системы репликации - Моделирование рынка (Часть 22): ФОРЕКС (III)
Хотя это уже третья статья об этом, я должен объяснить для тех, кто еще не понял разницу между фондовым рынком и валютным рынком (ФОРЕКС): большая разница заключается в том, что в ФОРЕКС не существует, точнее, нам не дают информацию о некоторых моментах, которые действительно происходили в ходе торговли.

Разработка системы репликации - Моделирование рынка (Часть 21): ФОРЕКС (II)
Мы продолжим строить систему для работы на рынке ФОРЕКС. Поэтому для того, чтобы решить эту проблему необходимо сначала объявить загрузку тиков до загрузки предыдущих баров. Это решает проблему, но в то же время заставляет пользователя следовать некой структуре в конфигурационном файле, которая, лично для меня, не имеет особого смысла. Причина в том, что, разработав программу, которая отвечает за анализ и выполнение того, что находится в конфигурационном файле, мы можем позволить пользователю объявлять нужные ему элементы в любом порядке.

Кросс-валидация и основы причинно-следственного вывода в моделях CatBoost, экспорт в ONNX формат
В данной статье предложен авторский способ создания ботов с использованием машинного обучения.

Популяционные алгоритмы оптимизации: Алгоритм интеллектуальных капель воды (Intelligent Water Drops, IWD)
В статье рассматривается интересный алгоритм - интеллектуальные капли воды, IWD, подсмотренный у неживой природы, симулирующий процесс формирования русла реки. Идеи этого алгоритма позволили значительно улучшить прошлого лидера рейтинга - SDS, а нового лидера (модифицированный SDSm), как обычно, найдёте в архиве к статье.

Торговая техника RSI Deep Three Move
В статье представлена техника торговли RSI Deep Three Move в MetaTrader 5. Статья основана на новой серии исследований, демонстрирующих несколько торговых методов, основанных на RSI - техническом индикаторе для измерения силы и импульса ценных бумаг, включая акции, валюты и товары.

Разработка системы репликации - Моделирование рынка (Часть 20): ФОРЕКС (I)
Первоначальная цель данной статьи заключается не в охвате всех возможностей ФОРЕКС, а скорее в адаптации системы таким образом, чтобы вы могли совершить хотя бы одну репликацию рынка. Моделирование оставим для другого момента. Однако, если у нас нет тиков, а есть только бары, приложив немного усилий, мы можем смоделировать возможные сделки, которые могли произойти на рынке ФОРЕКС. Так будет до тех пор, пока мы не рассмотрим, как адаптировать тестер. Попытка работать с данными ФОРЕКС внутри системы без их модификации приводит к ошибкам диапазона.

Разработка системы репликации - Моделирование рынка (Часть 19): Необходимые корректировки
Здесь мы подготовим почву для того, чтобы при необходимости добавления новых функций в код это происходило плавно и легко. Текущий код пока не может охватывать или обрабатывать некоторые моменты, которые будут необходимы для значимого прогресса. Нам нужно, чтобы всё было построено так, чтобы усилия по реализации некоторых вещей были минимальными. Если сделаем всё правильно, мы сможем получить действительно универсальную систему, способную очень легко адаптироваться к любой ситуации, которую необходимо охватить.

Нейросети — это просто (Часть 64): Метод Консервативного Весового Поведенческого Клонирования (CWBC)
В результате тестов, проведенных в предыдущих статьях, мы пришли к выводу, что оптимальность обученной стратегии во многом зависит от используемой обучаемой выборки. В данной статье я предлагаю вам познакомиться с довольно простым и эффективном методе выбора траекторий для обучения моделей.

Стоп-лосс и тейк-профит, дружелюбные к трейдеру
Стоп-лосс и тейк-профит могут оказать значительное влияние на результаты трейдинга. В этой статье мы рассмотрим несколько способов поиска оптимальных значений стоп-приказов.

Разработка системы репликации - Моделирование рынка (Часть 18): Тики и еще больше тиков (II)
В данном случае предельно ясно, что метрики очень далеки от идеального времени создания 1-минутного бара. Так что это первое, что мы действительно исправим. Исправить проблему синхронизации не сложно. Каким бы невероятным это ни казалось, на самом деле всё довольно просто. Однако мы не внесли исправление в предыдущую статью, потому что целью было объяснить, как перенести в окно Обзора рынка тиковые данные, которые использовались для создания 1-минутных баров на графике.

Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)
Продолжаем рассмотрение семейства методов Трансформера решений. Из предыдущих работ мы уже заметили, что обучение трансформера, лежащего в основе архитектуры данных методов, довольно сложная задача и требует большого количества размеченных обучающих данных. В данной статье мы рассмотрим алгоритм использования не размеченных траекторий для предварительного обучения моделей.

Регрессионные модели библиотеки Scikit-learn и их экспорт в ONNX
В данной статье мы рассмотрим применение регрессионных моделей пакета Scikit-learn, попробуем их сконвертировать в ONNX-формат и использовать полученные модели в программах на MQL5. Также мы сравним точность работы оригинальных моделей и их ONNX-версий для float и double. Кроме того, мы рассмотрим ONNX-представление регресионных моделей, это позволит лучше понять их внутреннее устройство и принцип работы.

Квантование в машинном обучении (Часть 2): Предобработка данных, отбор таблиц, обучение моделий CatBoost
В настоящей статье речь пойдёт о практическом применении квантования при построении древовидных моделей. Рассмотрены методы отбора квантовых таблиц и предобработки данных. Материал будет подан без сложных математических формул, доступным языком.

Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях
В последних статьях мы познакомились с несколькими вариантами использования метода Decision Transformer. Который позволяет анализировать не только текущее состояние, но и траекторию предшествующих состояний и, совершенных в них, действий. В данной статье я предлагаю Вам познакомиться с вариантом использования данного метода в иерархических моделях.

Разработка показателя качества советников
В этой статье мы объясним, как разработать показатель качества, который ваш советник сможет отображать в тестере стратегии. Мы познакомимся с двумя известными методами расчета (Ван Тарп и Санни Харрис).

Разработка системы репликации - Моделирование рынка (Часть 17): Тики и еще больше тиков (I)
Здесь мы увидим, как реализовать что-то действительно интересное, но в то же время очень сложное из-за отдельных моментов, которые многих смущают. И самое худшее, что может случиться - это то, что некоторые трейдеры, считающие себя профессионалами, ничего не знают о важности этих понятий на рынке капитала. Да, хотя основное внимание здесь уделяется программированию, но понимание некоторых вопросов, связанных с торговлей на рынках, имеет первостепенное значение для того, что мы собираемся здесь реализовать.

Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)
В этой статье рассмотрим ещё один алгоритм оптимизации, инспирированный неживой природой - алгоритм поиска системой зарядов (CSS). Цель этой статьи - представить новый алгоритм оптимизации, основанный на принципах физики и механики.

Квантование в машинном обучении (Часть 1): Теория, пример кода, разбор реализации в CatBoost
В настоящей статье речь пойдёт о теоретическом применении квантования при построении древовидных моделей. Рассмотрены реализованные методы квантования в CatBoost. Материал будет подан без сложных математических формул, доступным языком.

Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением
В процессе офлайн обучения мы оптимизируем политику Агента по данным обучающей выборки. Полученная стратегия придает Агенту уверенность в его действиях. Однако такой оптимизм не всегда оправдан и может привести к увеличению рисков в процессе эксплуатации модели. Сегодня мы рассмотрим один из методов снижения этих рисков.

Готовим мультисимвольные мультипериодные индикаторы
В статье рассмотрим принципы создания мультисимвольных мультипериодных индикаторов и получение от них данных в советниках и индикаторах. Рассмотрим основные нюансы использования мульти-индикаторов в советниках и индикаторах, и их отрисовку через буферы пользовательского индикатора.

Эксперименты с нейросетями (Часть 7): Передаем индикаторы
Примеры передачи индикаторов в перцептрон. В статье даются общие понятия, представлен простейший готовый советник, результаты его оптимизации и форвард тестирования.

Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)
Последние 2 статьи были посвящены методу Decision Transformer, который моделирует последовательности действий в контексте авторегрессионной модели желаемых вознаграждений. В данной статье мы рассмотрим ещё один алгоритм оптимизации данного метода.

Все, что вам нужно знать о структуре программы MQL5
Любая программа на любом языке программирования имеет определенную структуру. В этой статье вы изучите основные компоненты структуры программы на MQL5, что может быть очень полезно при создании торговой системы или торгового инструмента для MetaTrader 5.

Сезонность на рынке форекс и возможности ее использования
Каждый современный человек знаком с понятием сезонности, например, все мы привыкли к росту цен свежих овощей в зимний период или подорожанию топлива в сильные морозы, но мало кто знает, что подобные закономерности существуют и на рынке форекс.

Запускаем MetaTrader VPS впервые — пошаговая инструкция
Всем, кто использует торговые советники или подписки на сигналы, рано или поздно понадобится надежный круглосуточный хостинг для торговой платформы. Мы рекомендуем использовать MetaTrader VPS по целому ряду причин. Платить и управлять сервисом можно через аккаунт MQL5.community. Если у вас еще нет аккаунта на MQL5.com — зарегистрируйтесь и укажите его в настройках платформы.

Популяционные алгоритмы оптимизации: Стохастический диффузионный поиск (Stochastic Diffusion Search, SDS)
В статье рассматривается стохастический диффузионный поиск, SDS, это очень мощный и эффективный алгоритм оптимизации, основанный на принципах случайного блуждания. Алгоритм позволяет находить оптимальные решения в сложных многомерных пространствах, обладая высокой скоростью сходимости и способностью избегать локальных экстремумов.

Нейросети — это просто (Часть 59): Дихотомия контроля (Dichotomy of Control — DoC)
В предыдущей статье мы познакомились с Трансформером решений. Но сложная стохастическая среда валютного рынка не позволила в полной мере раскрыть потенциал представленного метода. Сегодня я хочу представить Вам алгоритм, который направлен на повышение производительности алгоритмов в стохастических средах.

Классификационные модели библиотеки Scikit-learn и их экспорт в ONNX
В данной статье мы рассмотрим применение всех классификационных моделей пакета Scikit-learn для решения задачи классификации ирисов Фишера, попробуем их сконвертировать в ONNX-формат и использовать полученные модели в программах на MQL5. Также мы сравним точность работы оригинальных моделей и их ONNX-версий на полном наборе Iris dataset.

Теория категорий в MQL5 (Часть 14): Функторы с линейным порядком
Эта статья из серии статей о реализации теории категорий в MQL5 посвящена функторам. Мы исследуем, как линейный порядок может быть отображен на множестве благодаря функторам при рассмотрении двух множеств данных, между которыми на первый взгляд отсутствует всякая связь.

Анализ циклов с использованием алгоритма Гёрцеля
В статье представлены утилиты, реализующие алгоритм Гёрцеля в MQL5 и два способа применения этого метода при анализе ценовых котировок для разработки стратегии.

Функции в MQL5-приложениях
Функции являются критически важными компонентами в любом языке программирования. Помимо прочего, они помогают разработчикам применять принцип DRY (don't repeat youself, не повторяйся). В статье рассмотрены функции и их создание в MQL5 с помощью простых приложений, которые обогащают вашу торговую систему, но не усложняют ее.

Нейросети — это просто (Часть 58): Трансформер решений (Decision Transformer—DT)
Мы продолжаем рассмотрение методов обучения с подкреплением. И в данной статье я предлагаю вам познакомиться с несколько иным алгоритмом, который рассматривает политику Агента в парадигме построения последовательности действий.

Библиотека численного анализа ALGLIB в MQL5
В этой статье мы кратко рассмотрим библиотеку численного анализа ALGLIB 3.19, ее приложения и новые алгоритмы, позволяющие повысить эффективность анализа финансовых данных.

Теория категорий в MQL5 (Часть 13): События календаря со схемами баз данных
В статье рассматривается, как схемы баз данных могут быть включены для классификации в MQL5. Мы кратко рассмотрим, как концепции схемы базы данных могут сочетаться с теорией категорий при идентификации текстовой (строковой) информации, имеющей отношение к торговле. В центре внимания будут находиться события календаря.

Вспоминаем старую трендовую стратегию: два стохастических осциллятора, MA и Фибоначчи
Старые торговые стратегии. В этой статье представлена стратегия отслеживания тренда. Стратегия исключительно техническая и использует несколько индикаторов и инструментов для подачи сигналов и определения целевых уровней. Компоненты стратегии включают в себя: 14-периодный стохастический осциллятор, пятипериодный стохастический осциллятор, скользящую среднюю с периодом 200 и проекцию Фибоначчи (для установки целевых уровней).