プライスアクション分析ツールキットの開発(第34回):高度なデータ取得パイプラインを用いた生の市場データからの予測モデル構築
突然のマーケットスパイクを見逃したり、それが発生したときに対応が間に合わなかったことはありませんか。ライブイベントを予測する最良の方法は、過去のパターンから学ぶことです。本記事では、MetaTrader 5で履歴データを取得し、それをPythonに送信して保存するスクリプトの作成方法を紹介します。これにより、スパイク検知システムの基礎を構築できます。以下で各ステップを詳しく見ていきましょう。
初心者からエキスパートへ:Reporting EA - ワークフローの設定
ブローカーは、多くの場合、あらかじめ定められたスケジュールに基づいて取引口座のレポートを定期的に提供します。これらの企業はAPI技術を通じて顧客の口座活動や取引履歴にアクセスできるため、取引パフォーマンスのレポートを代わりに生成することが可能です。同様に、MetaTrader 5ターミナルも詳細な取引履歴を保存しており、MQL5を利用することで完全にカスタマイズされたレポートの作成や、個別に設定した配信方法の定義が可能です。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略
高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
MQL5サービスからPythonアプリケーションへのMetaTraderティック情報アクセス(ソケット使用)
場合によっては、MQL5言語だけではすべてをプログラムできないことがあります。また、既存の高度なライブラリをMQL5に移植することは可能であっても、非常に時間がかかります。本記事では、MetaTraderのティック情報(Bid、Ask、時刻など)をMetaTraderサービスを経由してPythonアプリケーションに送信し、Windows OSへの依存を回避する方法を紹介します。
知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する
前回の記事では、オーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)のインディケーターの組み合わせを紹介しましたが、今回はこのペアリングを教師あり学習でどのように強化できるかを見ていきます。Awesome OscillatorとEnvelope Channelは、トレンドの把握とサポート/レジスタンスの補完的な組み合わせです。私たちの教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を使用し、ドット積カーネルとクロスタイムアテンションを活用してカーネルとチャネルのサイズを決定します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
取引所価格のバイナリコードの分析(第2回):BIP39への変換とGPTモデルの記述
価格の動きを解読し続けます。では、バイナリ価格コードをBIP39に変換して得られる「市場辞典」の言語分析はどうでしょうか。本記事では、データ分析における革新的なアプローチを掘り下げ、現代の自然言語処理技術が市場言語にどのように応用できるかを考察します。
時間進化移動アルゴリズム(TETA)
これは私自身のアルゴリズムです。本記事では、並行宇宙や時間の流れの概念に着想を得た「時間進化移動アルゴリズム(TETA: Time Evolution Travel Algorithm)」を紹介します。本アルゴリズムの基本的な考え方は、従来の意味でのタイムトラベルは不可能であるものの、異なる現実に至る一連の出来事の順序を選択することができるという点にあります。
強化学習と弱者淘汰を組み合わせた進化型取引アルゴリズム(ETARE)
この記事では、進化アルゴリズムと深層強化学習を組み合わせた、外国為替取引のための革新的な取引アルゴリズムを紹介します。このアルゴリズムは、非効率な個体を絶滅させるメカニズムを使用して取引戦略を最適化します。
プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出
本記事では、Pythonでローソク足パターンを手動で検出していた前回の方法から一歩進み、TA-Libを活用した自動検出手法へと移行します。TA-Libは、60種類以上の異なるローソク足パターンを認識できる強力なテクニカル分析ライブラリです。これらのパターンは、市場の反転やトレンド継続の可能性を読み取る上で有用なインサイトを提供します。ぜひ最後までお読みください。
ブラックホールアルゴリズム(BHA)
ブラックホールアルゴリズム(BHA)は、ブラックホールの重力原理に着想を得た最適化アルゴリズムです。本記事では、BHAがどのようにして優れた解を引き寄せ、局所最適解への陥り込みを回避するのか、そしてなぜこのアルゴリズムが複雑な問題を解くための強力なツールとなっているのかを解説します。シンプルな発想がいかにして最適化の世界で大きな成果を生み出すのかを見ていきましょう。
PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成
Pythonによるデータ分析とMQL5による取引執行を組み合わせたモジュール型の取引システムを開発します。このシステムは、4つの独立したモジュールによって市場の異なる側面(ボリューム、アービトラージ、経済、リスク)を並行して監視します。ランダムフォレストを400本の決定木で構成したモデルを用いて市場データを分析します。特に本システムでは、リスク管理に重点を置いています。どれほど高度なアルゴリズムであっても、適切なリスク管理がなければ意味がありません。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略
本記事では、ニュースを表示するだけでなく実際に取引を実行できるよう、EA(エキスパートアドバイザー)の機能拡張に焦点を当てます。MQL5上で自動売買の実装方法を解説し、「News Headline EA」を完全に反応的な取引システムへと発展させていきます。EAは、その豊富な機能により、アルゴリズム開発者にとって非常に強力なツールです。これまでの記事では、ニュースおよび経済指標カレンダーイベントの可視化ツールを中心に開発し、AIインサイトレーンやテクニカル指標分析を統合してきました。
MQL5で他の言語の実用的なモジュールを実装する(第2回):Pythonに着想を得たREQUESTSライブラリの構築
この記事では、MetaTrader 5 (MQL5)でWebリクエストの送受信をより簡単におこなうために、Pythonのrequestsモジュールに似たモジュールを実装します。
プライスアクション分析ツールキットの開発(第31回):Python Candlestick Recognitionエンジン(I) - 手動検出
ローソク足パターンはプライスアクション取引において基本的な要素であり、市場の反転や継続の可能性を示す貴重な手がかりを提供します。信頼できるツールを想像してみてください。このツールは、新しい価格バーが生成されるたびにそれを監視し、包み足、ハンマー、十字線、スターなどの主要な形成を特定し、重要な取引セットアップが検出された際に即座に通知します。これがまさに私たちが開発した機能です。このシステムは、取引初心者の方から経験豊富なプロフェッショナルまで幅広く活用できます。ローソク足パターンをリアルタイムで通知することで、取引の実行に集中し、より自信を持って効率的に取引をおこなうことが可能になります。以下では、本ツールの動作方法と、どのように取引戦略を強化できるかについて詳しく説明します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(V) - イベントリマインダーシステム
本ディスカッションでは、News Headline EAに表示される経済指標カレンダーイベントに対して、精緻化されたイベント通知ロジックを統合することで得られる追加的な改善について検討します。この強化により、主要な今後のイベント直前にユーザーがタイムリーに通知を受け取れるようになります。詳細については、本ディスカッションでご確認ください。
グラフ理論:ダイクストラ法を取引に適用する
ダイクストラ法は、グラフ理論における古典的な最短経路探索手法であり、市場ネットワークをモデル化することで取引戦略の最適化に応用できます。トレーダーは、ローソク足チャート上の価格データをグラフとして扱い、最も効率的な「経路」を見つけるためにダイクストラ法を使用できます。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(IV) - ローカルホストAIモデル市場インサイト
本日のディスカッションでは、オープンソースのAIモデルをセルフホスティングし、市場インサイトの生成に活用する方法について探ります。これは、News Headline EA(エキスパートアドバイザー)を拡張し、AIインサイトレーンを導入することで、多機能統合型アシストツールへと変貌させる取り組みの一環です。このアップグレードにより、EAはカレンダーイベント、金融ニュース速報、テクニカル指標に加え、AIによる市場見解を提供できるようになり、タイムリーで多角的、かつ知的なサポートを取引判断に提供します。本日は、実践的な統合戦略や、MQL5が外部リソースと連携して強力で知的な取引ターミナルを構築する方法についても議論します。
MQL5 Algo Forgeへの移行(第4回):バージョンとリリースの操作
SimpleCandlesプロジェクトおよびAdwizardプロジェクトの開発を継続しつつ、MQL5 Algo Forgeのバージョン管理システムおよびリポジトリのより詳細な活用方法についても説明していきます。
MQL5で他の言語の実用的なモジュールを実装する(第1回):Pythonにヒントを得たSQLite3ライブラリの構築
Pythonのsqlite3モジュールは、SQLiteデータベースを扱うためのシンプルで高速かつ便利な方法を提供しています。本記事では、MQL5に組み込まれているデータベース操作用の関数群を活用し、Pythonのsqlite3モジュールと同様の操作感でSQLite3データベースを扱える独自モジュールを構築します。
知っておくべきMQL5ウィザードのテクニック(第72回):教師あり学習でMACDとOBVのパターンを活用する
前回の記事で紹介したMACDとOBVのインジケーターペアをフォローアップし、今回はこのペアを機械学習でどのように強化できるかを見ていきます。MACDとOBVは、それぞれトレンド系と出来高系という補完的なペアです。私たちの機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使い、カーネルとチャンネルのサイズを調整する際に指数カーネルを利用して、このインジケーターペアの予測をファインチューニングします。今回もこれまでと同様に、MQL5ウィザードでエキスパートアドバイザー(EA)を組み立てられるようにしたカスタムシグナルクラスファイル内で実装しています。
データサイエンスとML(第45回):FacebookのPROPHETモデルを用いた外国為替時系列予測
Prophetモデルは、Meta(旧Facebook)によって開発された強力な時系列予測ツールであり、トレンドや季節性、イベント効果(holiday effects)を最小限の手作業で捉えることができます。このモデルは、需要予測やビジネスプランニングにおいて広く活用されてきました。本記事では、ProphetモデルをFXのボラティリティ予測に応用する効果について探り、従来のビジネス用途を超えた利用例を紹介します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(III)-インジケーターインサイト
本記事では、News Headline EAをさらに進化させるために、専用の「インジケーターインサイトレーン」を導入します。これは、RSI、MACD、ストキャスティクス、CCIなどの主要インジケーターから生成されるテクニカルシグナルを、チャート上にコンパクトにまとめて表示する仕組みです。この方法により、MetaTrader 5ターミナルで複数のインジケーターウィンドウを開く必要がなくなり、作業スペースをすっきりと保つことができます。さらに、MQL5のAPIを活用してインジケーターデータをバックグラウンドで取得することで、カスタムロジックを使ったリアルタイムの市場分析や可視化が可能になります。本記事では、MQL5でインジケーターデータを操作し、チャート上の単一水平レーンに、知的で省スペースなスクロール式インサイトシステムを作成する方法を詳しく解説します。
MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成
Telegramと同様に、Discordもその通信APIを使用してJSON形式の情報やメッセージを受信することができます。本記事では、MetaTrader5からDiscordの取引コミュニティに取引シグナルやアップデートを送信するためにDiscord APIをどのように利用できるかを探っていきます。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(II)
本日は、外部ニュースAPIを統合し、News Headline EAの見出し取得元として活用する新たなステップに進みます。このフェーズでは、既存の大手ニュースソースから新興の情報源まで幅広く取り上げ、それぞれのAPIに効果的にアクセスする方法を学びます。さらに、取得したデータをパースし、エキスパートアドバイザー(EA)内での表示に最適化された形式へ変換する手法についても解説します。ニュース見出しや経済指標カレンダーをチャート上に直接表示できることには、大きなメリットがあります。コンパクトで邪魔にならないインターフェースを通じて、取引中でも効率的に情報を確認できるようになるのです。
MQL5 Algo Forgeへの移行(第3回):外部コードを自分のプロジェクトに統合する
MQL5 Algo Forgeストレージにある任意のリポジトリから外部コードを自分のプロジェクトへ統合する方法を見ていきましょう。本記事ではいよいよ、有望でありながらもより複雑な課題に踏み込みます。すなわち、MQL5 Algo Forge内のサードパーティ製リポジトリからライブラリを実際に接続し、活用する方法についてです。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(I)
MetaTrader 5ターミナルでの取引において、ニュースのアクセス性は非常に重要な要素です。数多くのニュースAPIが存在するものの、多くのトレーダーはそれらを効果的に取引環境に統合することに課題を抱えています。本記事では、ニュースを最も必要とする場所であるチャート上に直接表示する、効率的なソリューションの構築を目指します。その実現のために、APIソースからのリアルタイムニュースを監視し、表示するNews Headline EA(エキスパートアドバイザー)を作成します。
知っておくべきMQL5ウィザードのテクニック(第70回): 指数カーネルネットワークにおけるSARとRVIのパターンの使用
前回の記事では、SARとRVIのインジケーターペアを紹介しました。今回は、このインジケーターペアを機械学習によってどのように拡張できるかを検討します。SARとRVIは、それぞれトレンドとモメンタムを補完し合う関係にあります。本機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使用し、カーネルとチャネルのサイズを指数関数的に拡大・調整することで、このインジケーターペアの予測を微調整します。この処理は、常にMQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイル内でおこなわれます。
MQL5で取引管理者パネルを作成する(第12回):FX取引計算ツールの統合
取引において重要な数値を正確に計算することは、すべてのトレーダーにとって欠かせません。本記事では、強力なユーティリティであるFX取引計算ツールを取引管理パネルに組み込み、マルチパネル型の取引管理者システムの機能をさらに拡張する方法について解説します。リスク、ポジションサイズ、潜在的な利益を効率的に算出することは、取引の精度を高めるうえで非常に重要です。この新機能は、パネル内でこれらの計算をよりスムーズかつ直感的におこなえるよう設計されています。本記事では、MQL5を用いた高度な取引パネル構築の実践的な応用例を紹介します。
知っておくべきMQL5ウィザードのテクニック(第68回): コサインカーネルネットワークでTRIXとWPRのパターンを使用する
前回の記事では、TRIXとWilliams Percent Range (WPR)の指標ペアを紹介しましたが、今回はこの指標ペアを機械学習で拡張する方法について検討します。TRIXとWPRは、トレンド指標とサポート/レジスタンス補完ペアとして組み合わせられます。本機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使用し、予測精度を微調整する際にコサインカーネルをアーキテクチャに組み込んでいます。これは常に、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイル内で行われます。。
MetaTrader 5のPythonでMQL5のような取引クラスを構築する
MetaTrader 5のPythonパッケージは、Python言語でMetaTrader 5プラットフォーム用の取引アプリケーションを構築する簡単な方法を提供しますが、強力で有用なツールである一方で、アルゴリズム取引ソリューションを作成する際にはMQL5プログラミング言語ほど容易ではありません。本記事では、MQL5で提供されているものに類似した取引クラスを構築し、類似した構文を作成することで、MQL5と同様にPythonで自動売買ロボットをより簡単に作成できるようにします。
知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する
FrAMAインジケーターとForce Indexオシレーターは、トレンドと出来高のツールであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事では、このペアを紹介し、機械学習の適用可能性を検討しました。畳み込みニューラルネットワークを使用しており、内積カーネルを利用して、これらのインジケーターの入力に基づいた予測をおこないます。これは、MQL5ウィザードと連携してEAを組み立てるカスタムシグナルクラスファイルで実行されます。
MQL5 Algo Forgeへの移行(第2回):複数のリポジトリの操作
本稿では、プロジェクトのソースコードを公開リポジトリに保存する際の1つのアプローチについて検討します。コードを複数のブランチに分散させることで、プロジェクト開発における明確で便利なルールを確立していきます。
MQL5 Algo Forgeへの移行(第1回):メインリポジトリの作成
MetaEditorでプロジェクトを進める際、開発者はしばしばコードのバージョンを管理する必要に直面します。MetaQuotesは最近、Gitへの移行と、コードのバージョン管理や共同作業を可能にするMQL5 Algo Forgeの立ち上げを発表しました。本記事では、新しく導入されたツールと既存のツールを、より効率的に活用する方法について解説します。
MQL5における高度な注文執行アルゴリズム:TWAP、VWAP、アイスバーグ注文
MQL5フレームワークで、機関投資家向けの高度な執行アルゴリズム(TWAP、VWAP、アイスバーグ注文)を小口トレーダー向けに提供します。統合された実行マネージャーとパフォーマンスアナライザーを用いて、注文の分割(スライシング)や分析をよりスムーズかつ正確に行える環境を提供します。
MQL5開発用のカスタムデバッグおよびプロファイリングツール(第1回):高度なロギング
MQL5で、単なるPrint文を超えた強力なカスタムロギングフレームワークを実装する方法を学びましょう。このフレームワークは、ログの重要度レベル、複数の出力ハンドラ、自動ファイルローテーションをサポートし、実行中にすべて設定可能です。シングルトン設計のCLoggerをConsoleLogHandlerとFileLogHandlerに統合することで、[エキスパート]タブと永続ファイルの両方に、文脈情報やタイムスタンプ付きのログを記録できます。明確でカスタマイズ可能なログ形式と集中管理により、エキスパートアドバイザー(EA)のデバッグとパフォーマンストレースを効率化します。
MQL5で取引管理者パネルを作成する(第11回):最新機能通信インターフェース(I)
本日は、コミュニケーションパネルのメッセージングインターフェースを、現代の高性能なコミュニケーションアプリの標準に合わせて強化することに焦点を当てます。この改善は、CommunicationsDialogクラスの更新によって実現されます。この記事とディスカッションでは、主要な知見を紹介しつつ、MQL5を用いたインターフェースプログラミングの次のステップを整理していきます。
MQL5 Algo Forgeのご紹介
アルゴリズム取引開発者のための専用ポータル「MQL5 Algo Forge」をご紹介します。MQL5 Algo Forgeは、Git のパワーと、MQL5エコシステム内でプロジェクトを管理・整理するための直感的なインターフェースを兼ね備えています。ここでは、気になる著者をフォローしたり、チームを結成したり、アルゴリズム取引プロジェクトで共同作業を行うことが可能です。
知っておくべきMQL5ウィザードのテクニック(第64回):ホワイトノイズカーネルでDeMarkerとEnvelope Channelsのパターンを活用する
DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。前回の記事では、機械学習を加えて、これらのインジケーターのペアを紹介しました。ホワイトノイズカーネルを使用してこれら2つのインジケーターからのベクトル化されたシグナルを処理する回帰型ニューラルネットワークを使用しています。これは、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイルで実行されます。
知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する
ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事に続き、今回は開発済みモデルの運用中の学習や更新を、強化学習を用いてどのように実現できるかを検討します。この記事で使用するアルゴリズムは、本連載ではまだ扱っていない「TRPO(Trust Region Policy Optimization、信頼領域方策最適化)」として知られる手法です。また、MQL5ウィザードによるEAの組み立ては、モデルのテストをより迅速におこなえるだけでなく、異なるシグナルタイプで配布し検証できる形でセットアップできる点も利点です。