初級から中級へ:配列と文字列(II)
この記事では、プログラミングがまだ非常に初歩的な段階にあるにもかかわらず、すでにいくつかの興味深いアプリケーションを実装できることを示します。今回は、比較的シンプルなパスワードジェネレーターを作成します。このようにして、これまでに説明してきたいくつかの概念を実際に適用することができます。加えて、特定の問題に対する解決策をどのように構築できるかについても考察していきます。
リプレイシステムの開発(第67回):コントロールインジケーターの改良
この記事では、コードを少し手直しすることで、どのような改善が得られるかを見ていきます。今回の改良は、コードの簡素化を図り、MQL5ライブラリの呼び出しをより活用し、そして何よりも、将来的に開発する可能性のある他のプロジェクトでも、より安定して安全かつ使いやすくなることを目的としています。
取引におけるニューラルネットワーク:Superpoint Transformer (SPFormer)
本記事では、中間データの集約を不要とするSuperpoint Transformer (SPFormer)に基づく3Dオブジェクトのセグメンテーション手法を紹介します。これによりセグメンテーション処理の高速化とモデル性能の向上が実現されます。
初級から中級へ:配列と文字列(I)
本日の記事では、いくつかの特殊なデータ型について見ていきます。まず、文字列とは何かを定義し、いくつかの基本的な操作方法を説明します。これにより、興味深いデータ型を扱えるようになりますが、初心者にとっては少し混乱することもあるかもしれません。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
初級から中級へ:演算子の優先順位
これは間違いなく、純粋に理論だけで説明するには最も難しいテーマの一つです。だからこそ、ここで取り上げるすべての内容を実際に手を動かして練習する必要があります。一見すると単純そうに見えるかもしれませんが、演算子というトピックは、継続的な学習と実践を通じて初めて理解できるものです。
リプレイシステムの開発(第66回)サービスの再生(VII)
この記事では、チャート上に新しいバーがいつ表示されるかを判断するための、最初のソリューションを実装します。このソリューションは、さまざまな状況に応用可能です。その仕組みを理解することで、いくつかの重要なポイントを把握する助けとなるでしょう。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
初級から中級へ:FOR文
この記事では、FOR文の最も基本的な概念について解説します。ここで紹介する内容をしっかり理解することは非常に重要です。他の制御文と異なり、FOR文にはいくつか特有の癖があり、それが原因で複雑になりやすい側面があります。ですので、理解が追いつかないまま放置せず、できるだけ早い段階から学習と実践を始めるようにしましょう。。
取引におけるニューラルネットワーク:データの局所構造の探索
ノイズの多い状況下で市場データの局所構造を効果的に識別・保持することは、取引において極めて重要な課題です。自己アテンション(Self-Attention)メカニズムの活用は、このようなデータの処理において有望な結果を示していますが、従来のアプローチでは基盤となる構造の局所的な特性が考慮されていません。この記事では、こうした構造的依存関係を組み込むことが可能なアルゴリズムを紹介します。
多通貨エキスパートアドバイザーの開発(第18回):将来期間を考慮したグループ選択の自動化
これまで手動でおこなっていた手順の自動化を引き続き進めていきましょう。今回は、第2段階の自動化、すなわち取引戦略の単一インスタンスの最適なグループ選定に立ち返り、フォワード期間におけるインスタンスの結果を考慮する機能を追加します。
取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)
ハイパーネットワークを活用した新しいオブジェクト検出アプローチをご紹介します。ハイパーネットワークはメインモデルの重みを生成し、現在の市場状況の特性を考慮に入れることができます。この手法により、モデルはさまざまな取引条件に適応し、予測精度の向上が可能になります。
雲モデル最適化(ACMO):理論
この記事は、最適化問題を解決するために雲の挙動をシミュレートするメタヒューリスティックな雲モデル最適化(ACMO: Atmosphere Clouds Model Optimization)アルゴリズムについて解説します。このアルゴリズムは、雲の生成、移動、拡散といった自然現象の原理を用いて、解空間内の「気象条件」に適応します。この記事では、ACMOの気象的なシミュレーションが、複雑な可能性空間の中でどのようにして最適解を導き出すかを明らかにし、「空」の準備、雲の生成、雲の移動、そして雨の集約といった各ステップを詳しく説明します。
リプレイシステムの開発(第65回)サービスの再生(VI)
この記事では、リプレイ/シミュレーションアプリケーションと併用する際に発生するマウスポインタの問題について、その実装と解決方法を解説します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
リスク管理への定量的なアプローチ:PythonとMetaTrader 5を使用してVaRモデルを適用し、多通貨ポートフォリオを最適化する
この記事では、複数通貨ポートフォリオの最適化におけるバリュー・アット・リスク(VaR: Value at Risk)モデルの可能性について探ります。PythonのパワーとMetaTrader 5の機能を活用し、効率的な資本配分とポジション管理のためにVaR分析をどのように実装するかを紹介します。理論的な基礎から実践的な実装まで、アルゴリズム取引における最も堅牢なリスク計算手法の一つであるVaRの応用に関するあらゆる側面を取り上げています。
初級から中級へ:SWITCH文
この記事では、SWITCH文の最も基本的かつシンプルな使い方について学びます。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
PythonとMQL5における局所的特徴量選択の適用
この記事では、Narges Armanfardらの論文「Local Feature Selection for Data Classification」で提案された特徴量選択アルゴリズムを紹介します。このアルゴリズムはPythonで実装されており、MetaTrader 5アプリケーションに統合可能なバイナリ分類モデルの構築に使用されます。
アーチェリーアルゴリズム(AA)
この記事では、アーチェリーに着想を得た最適化アルゴリズムについて詳しく検討し、有望な「矢」の着地点を選定するメカニズムとしてルーレット法の活用に焦点を当てます。この手法により、解の質を評価し、さらなる探索に最も有望な位置を選び出すことが可能になります。
インジケーターを便利に扱うためのシンプルなソリューション
この記事では、チャート上からインジケーターの設定を直接変更できるシンプルなパネルの作成方法と、そのパネルをインジケーターに接続するために必要な変更点について解説します。この記事はMQL5初心者向けに書かれています。
取引におけるニューラルネットワーク:点群用Transformer (Pointformer)
この記事では、点群におけるオブジェクト検出問題を解決するためのアテンションを用いたアルゴリズムについて解説します。点群におけるオブジェクト検出は、多くの現実世界の応用において極めて重要です。
リプレイシステムの開発(第64回):サービスの再生(V)
この記事では、コード内の2つのエラーを修正する方法について説明します。ただし、初心者プログラマーの皆さんに、物事が必ずしも期待どおりに進むとは限らないことを理解してもらえるよう、できるだけわかりやすく解説したいと思います。いずれにせよ、これは学びの機会です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。ここで紹介する内容は教育目的のみに限定されており、提示された概念を探求すること以外の目的でこのアプリケーションを最終的な文書と見なすべきではありません。
リプレイシステムの開発(第63回):サービスの再生(IV)
この記事では、1分足のティックシミュレーションに関する問題を最終的に解決し、実際のティックと共存できるようにします。これにより、将来的なトラブルを回避することが可能になります。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
細菌走化性最適化(BCO)
この記事では、細菌走化性最適化(BCO)アルゴリズムのオリジナルバージョンとその改良版を紹介します。新バージョン「BCOm」では、細菌の移動メカニズムを簡素化し、位置履歴への依78ytf存を軽減するとともに、計算負荷の大きかった元のバージョンに比べて、より単純な数学的手法を採用しています。この記事では両者の違いを詳しく検討し、とくにBCOmの特徴に焦点を当てます。また、テストを実施し、その結果をまとめます。
注文板に基づいた取引システムの開発(第1回):インジケーター
市場の厚みは、特に高頻度取引(HFT)アルゴリズムにおいて、高速な取引を実行するために不可欠な要素です。本連載では、多くの取引可能な銘柄に対してブローカー経由で取得できるこの種の取引イベントについて取り上げます。まずは、チャート上に直接表示されるヒストグラムのカラーパレット、位置、サイズをカスタマイズ可能なインジケーターから始めます。次に、特定の条件下でこのインジケーターをテストするためのBookEventイベントの生成方法について解説します。今後の記事では、価格分布データの保存方法や、そのデータをストラテジーテスターで活用する方法などのトピックも取り上げる予定です。
取引におけるニューラルネットワーク:点群解析(PointNet)
直接的な点群解析は、不要なデータの増加を避け、分類やセグメンテーションタスクにおけるモデルの性能を向上させます。このような手法は、元データの摂動に対して高い性能と堅牢性を示します。
初級から中級へ:Includeディレクティブ
本日の記事では、MQL5のさまざまなコードで広く使用されているコンパイルディレクティブについて解説します。本稿ではこのディレクティブについて表面的な説明に留めますが、今後プログラミングレベルが上がるにつれて不可欠なものとなるため、使い方を理解し始めることが重要です。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)
階層的ベクトルTransformer法の研究を引き続き進めていきます。本記事では、モデルの構築を完了し、実際の履歴データを用いて訓練およびテストをおこないます。
初級から中級へ:BREAK文とCONTINUE文
この記事では、ループ内でのRETURN、BREAK、CONTINUE文の使い方について解説します。ループの実行フローにおいて、これらの各文がどのような役割を果たすかを理解することは、より複雑なアプリケーションを扱う上で非常に重要です。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
USDとEURの指数チャート—MetaTrader 5サービスの例
MetaTrader 5サービスを例に、米ドル指数(USDX)およびユーロ指数(EURX)チャートの作成と更新について考察します。サービス起動時には、必要な合成銘柄が存在するかを確認し、未作成であれば新規作成します。その後、それを気配値表示ウィンドウに追加します。続いて、合成銘柄の1分足およびティック履歴を作成し、最後にその銘柄のチャートを表示します。
タブーサーチ(TS)
この記事では、最初期かつ最も広く知られているメタヒューリスティック手法の一つであるタブーサーチアルゴリズムについて解説します。初期解の選択や近傍解の探索から始め、特にタブーリストの活用に焦点を当てながら、アルゴリズムの動作を詳しく見ていきます。本記事では、タブーサーチの主要な特徴と要素について取り上げます。
初心者からプロまでMQL5をマスターする(第5回):基本的な制御フロー演算子
この記事では、プログラムの実行フローを変更するために使用される主要な演算子(条件文、ループ、switch文)について説明します。これらの演算子を利用することで、作成する関数がより「インテリジェント」に動作できるようになります。
MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する
この記事では、パラボリックSARと単純移動平均(SMA)インジケーターを活用し、応答性の高い取引戦略を構築する高速取引型エキスパートアドバイザー(EA)をMQL5で開発します。インジケーターの使用方法、シグナルの生成、テストおよび最適化プロセスなど、戦略の実装について詳しく解説します。
多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備
現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)
マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
初級から中級へ:WHILE文とDO WHILE文
この記事では、最初のループ文を実際的かつ視覚的に見ていきます。多くの初心者はループを作成するという作業に直面すると不安を感じますが、正しく安全におこなう方法を知るには経験と練習が必要です。しかし、コード内でループを使用する際の主な問題と注意事項を示すことで、皆さんの悩みや苦しみを軽減できるかもしれません。
取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)
エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。
ニューラルネットワークの実践:最初のニューロン
この記事では、シンプルで控えめなもの、つまりニューロンの構築を始めます。ごく少量のMQL5コードでプログラムしますが、それでも私のテストではこのニューロンは見事に機能しました。とはいえ、私がここで何を言おうとしているのかを理解するには、これまでのニューラルネットワークに関する連載を少し振り返ってみる必要があります。
初級から中級へ:IF ELSE
この記事では、IF演算子と、それに対応するELSEの使い方について解説します。この文は、あらゆるプログラミング言語において、最も重要かつ意義深いものです。しかし、その使いやすさにもかかわらず、使用経験や関連概念に対する理解がないと、時に混乱を招くことがあります。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
リプレイシステムの開発(第62回):サービスの再生(III)
この記事では、実際のデータを使用する際にアプリケーションのパフォーマンスに影響を及ぼす可能性のある「ティック過剰」の問題について取り上げます。このティック過剰は、1分足を適切なタイミングで構築するうえで支障となることがよくあります。
リプレイシステムの開発(第61回):サービスの再生(II)
この記事では、リプレイ/シミュレーションシステムをより効率的かつ安全に動作させるための変更点について解説します。また、クラスを最大限に活用したいと考えている方にも役立つ情報を取り上げます。さらに、クラスを使用する際にコードのパフォーマンスを低下させるMQL5特有の問題点を取り上げ、それに対する具体的な解決策についても説明します。
知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター
ACオシレーター(アクセラレーターオシレーター、Accelerator Oscillator)は、価格のモメンタムの「速度」だけでなく、その「加速」を追跡する、ビル・ウィリアムズによって開発されたインジケーターの一つです。最近の記事で取り上げたオーサムオシレーター(AO)と非常によく似ていますが、単なるスピードではなく加速に重点を置くことで、遅延の影響を回避しようとしています。本記事では、毎回のようにこのオシレーターからどのようなパターンが得られるかを分析し、ウィザード形式で構築されたエキスパートアドバイザー(EA)を通じて、それらが実際の取引においてどのような意味を持ち得るかを検証します。