Artículos sobre programación en el lenguaje MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Formulación de un Asesor Experto Multipar Dinámico (Parte 1): Correlación de divisas y correlación inversa

Formulación de un Asesor Experto Multipar Dinámico (Parte 1): Correlación de divisas y correlación inversa

El asesor experto dinámico de múltiples pares aprovecha las estrategias de correlación y correlación inversa para optimizar el rendimiento comercial. Al analizar datos del mercado en tiempo real, identifica y explota la relación entre pares de divisas.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Piense en un asesor experto independiente. Anteriormente, analizamos un Asesor Experto basado en indicadores que también se asoció con un script independiente para dibujar la geometría de riesgo y recompensa. Hoy discutiremos la arquitectura de un Asesor Experto MQL5, que integra todas las características en un solo programa.
preview
Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Este artículo presenta una guía completa para implementar un sistema comercial sofisticado utilizando análisis de red de causalidad (CNA) y autorregresión vectorial (Vector autoregression, VAR) en MQL5. Abarca los fundamentos teóricos de estos métodos, ofrece explicaciones detalladas de las funciones clave del algoritmo de negociación e incluye código de ejemplo para su aplicación.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

En este artículo, refactorizamos el código existente utilizado para enviar mensajes y capturas de pantalla de MQL5 a Telegram organizándolo en funciones modulares y reutilizables. Esto agilizará el proceso, permitiendo una ejecución más eficiente y una gestión del código más sencilla en múltiples instancias.
preview
Reimaginando las estrategias clásicas (Parte VII): Análisis de los mercados Forex y la deuda soberana en el USDJPY

Reimaginando las estrategias clásicas (Parte VII): Análisis de los mercados Forex y la deuda soberana en el USDJPY

En el artículo de hoy analizaremos la relación entre los tipos de cambio futuros y los bonos gubernamentales. Los bonos se encuentran entre las formas más populares de valores de renta fija y serán el foco de nuestro debate. Únase a nosotros mientras exploramos si podemos mejorar una estrategia clásica utilizando IA.
preview
Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

La regresión de vectores de soporte es una forma idealista de encontrar una función o "hiperplano" que describa mejor la relación entre dos conjuntos de datos. Intentamos aprovechar esto en la previsión de series de tiempo dentro de clases personalizadas del asistente MQL5.
preview
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
preview
Aplicación de la teoría de juegos de Nash con filtrado HMM en el trading

Aplicación de la teoría de juegos de Nash con filtrado HMM en el trading

Este artículo profundiza en la aplicación de la teoría de juegos de John Nash, específicamente el Equilibrio de Nash, en el trading. Se analiza cómo los traders pueden utilizar scripts de Python y MetaTrader 5 para identificar y explotar las ineficiencias del mercado utilizando los principios de Nash. El artículo proporciona una guía paso a paso sobre la implementación de estas estrategias, incluido el uso de modelos ocultos de Markov (HMM) y análisis estadístico, para mejorar el rendimiento comercial.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto MQL5 que codifica capturas de pantalla de gráficos como datos de imagen y las envía a un chat de Telegram a través de peticiones HTTP. Al integrar la codificación y transmisión de fotos, mejoramos el sistema existente MQL5-Telegram con perspectivas visuales de trading directamente dentro de Telegram.
preview
Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería

Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería

Este artículo analiza la creación de una interfaz de mensajería para MetaTrader 5, dirigida a los administradores de sistemas, para facilitar la comunicación con otros traders directamente dentro de la plataforma. Las integraciones recientes de plataformas sociales con MQL5 permiten una rápida transmisión de señales a través de diferentes canales. Imagina poder validar las señales enviadas con un solo clic: "SÍ" o "NO". Sigue leyendo para obtener más información.
preview
Redes neuronales en el trading: Modelos del espacio de estados

Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.
preview
Obtenga una ventaja sobre cualquier mercado (Parte III): Índice de gasto de Visa

Obtenga una ventaja sobre cualquier mercado (Parte III): Índice de gasto de Visa

En el mundo de los macrodatos, hay millones de conjuntos de datos alternativos que pueden mejorar nuestras estrategias de negociación. En esta serie de artículos le ayudaremos a identificar los conjuntos de datos públicos más informativos.
preview
Analizamos ejemplos de estrategias comerciales en el terminal de cliente

Analizamos ejemplos de estrategias comerciales en el terminal de cliente

En este artículo, utilizaremos esquemas de bloques para analizar visualmente la lógica de los asesores de entrenamiento adjuntos al terminal, ubicados en la carpeta Experts\Free Robots, que negocian con patrones de velas.
preview
Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos

Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos

Los núcleos del proceso gaussiano son la función de covarianza de la distribución normal que podría desempeñar un papel en el pronóstico. Exploramos este algoritmo único en una clase de señal personalizada de MQL5 para ver si podría usarse como una señal de entrada y salida principal.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.
preview
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.
preview
Gestión de Riesgo (parte 3): Construyendo la Clase Principal para la Gestión de Riesgo

Gestión de Riesgo (parte 3): Construyendo la Clase Principal para la Gestión de Riesgo

En este artículo daremos inicio a la creación de la clase principal de gestión de riesgo, la cual será fundamental para administrar el riesgo en el sistema. Nos enfocaremos en construir las bases, definiendo estructuras, variables y funciones esenciales. Además, implementaremos los métodos necesarios para asignar valores a las pérdidas y ganancias máximas, estableciendo así los cimientos de esta gestión.
preview
Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.
preview
Redes neuronales en el trading: Resultados prácticos del método TEMPO

Redes neuronales en el trading: Resultados prácticos del método TEMPO

Continuamos familiarizándonos con el método TEMPO. En este artículo, analizaremos la efectividad de los enfoques propuestos con datos históricos reales.
preview
Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR

Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR

En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.
preview
Aprendiendo MQL5 de principiante a profesional (Parte IV): Sobre arrays, funciones y variables globales del terminal

Aprendiendo MQL5 de principiante a profesional (Parte IV): Sobre arrays, funciones y variables globales del terminal

El artículo es una continuación de la serie para principiantes. En él proporcionamos información detallada sobre los arrays de datos y la interacción de datos y funciones, así como de las variables globales del terminal que permiten el intercambio de datos entre diferentes programas MQL5.
preview
Características del Wizard MQL5 que debe conocer (Parte 32): Regularización

Características del Wizard MQL5 que debe conocer (Parte 32): Regularización

La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.
preview
Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Continuamos nuestro análisis de los modelos de pronóstico de series temporales. En este artículo le propongo familiarizarnos con un algoritmo complejo construido sobre el uso de un modelo de lenguaje previamente entrenado.
preview
Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5

Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5

En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.
preview
Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.
preview
Integración en MQL5: Python

Integración en MQL5: Python

Python es un lenguaje de programación conocido y popular con muchas características, especialmente en los campos de las finanzas, la ciencia de datos, la Inteligencia Artificial y el Aprendizaje Automático. Python es una herramienta poderosa que también puede resultar útil en el trading. MQL5 nos permite utilizar este poderoso lenguaje como una integración para lograr nuestros objetivos de manera efectiva. En este artículo, compartiremos cómo podemos usar Python como una integración en MQL5 después de aprender información básica sobre Python.
preview
Monitoreo de transacciones usando notificaciones push: ejemplo de un servicio en MetaTrader 5

Monitoreo de transacciones usando notificaciones push: ejemplo de un servicio en MetaTrader 5

En este artículo veremos cómo crear un programa de servicio para enviar notificaciones a un smartphone sobre los resultados comerciales. Asimismo, aprenderemos cómo trabajar con listas de objetos de la biblioteca estándar para organizar una muestra de objetos según las propiedades requeridas.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

En esta discusión, crearemos nuestro primer Asesor Experto en MQL5 basado en el indicador que creamos en el artículo anterior. Cubriremos todas las características necesarias para automatizar el proceso, incluida la gestión de riesgos. Esto beneficiará ampliamente a los usuarios para pasar de la ejecución manual de operaciones a sistemas automatizados.
preview
Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases

Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases

Este artículo supone una continuación del tema del comportamiento social de los organismos vivos y su impacto en el desarrollo de un nuevo modelo matemático: el ASBO (Adaptive Social Behavior Optimization). Así, nos sumergiremos en la evolución en dos fases, probaremos el algoritmo y sacaremos conclusiones. Al igual que en la naturaleza un grupo de organismos vivos une sus esfuerzos para sobrevivir, el ASBO utiliza los principios de comportamiento colectivo para resolver problemas de optimización complejos.
preview
Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.

Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.

En esta serie de artículos, analizamos estrategias de trading clásicas utilizando algoritmos modernos para determinar si podemos mejorar la estrategia utilizando IA. En el artículo de hoy, retomamos un enfoque clásico para operar con el SP500 utilizando la relación que guarda con los bonos del Tesoro estadounidense.
preview
Operar con noticias de manera sencilla (Parte 3): Realizando operaciones

Operar con noticias de manera sencilla (Parte 3): Realizando operaciones

En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.
preview
Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)

Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)

En este artículo, veremos cómo funciona el código faltante del artículo anterior, DispatchMessage. Aquí se introducirá el tema del próximo artículo. Por esta razón, es importante entender el funcionamiento de este procedimiento antes de pasar al siguiente tema. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.
preview
Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)

Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)

En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.
preview
Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA

Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA

Este artículo presenta un asesor experto sofisticado para el trading de divisas, que combina el aprendizaje automático con el análisis técnico. Se centra en la negociación de acciones de Apple, presentando optimización adaptativa, gestión de riesgos y múltiples estrategias. Las pruebas retrospectivas muestran resultados prometedores con una alta rentabilidad, pero también caídas significativas, lo que indica potencial para un mayor refinamiento.
preview
Desarrollo de un sistema de repetición (Parte 74): Un nuevo Chart Trade (I)

Desarrollo de un sistema de repetición (Parte 74): Un nuevo Chart Trade (I)

En este artículo, modificaremos el último código visto en esta secuencia sobre Chart Trade. Estos cambios son necesarios para adaptar el código al modelo actual del sistema de repetición/simulador. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe considerarse una aplicación destinada a otros fines que no sean el aprendizaje y el estudio de los conceptos mostrados.
preview
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto integrado con MQL5 y Telegram que envía señales de cruce de medias móviles a Telegram. Detallamos el proceso de generación de señales de trading a partir de cruces de medias móviles, implementando el código necesario en MQL5, y asegurando que la integración funciona a la perfección. El resultado es un sistema que proporciona alertas comerciales en tiempo real directamente a su chat grupal de Telegram.