Construa Expert Advisors Auto-Otimizáveis em MQL5 (Parte 2): Estratégia de Scalping USDJPY
Junte-se a nós hoje enquanto nos desafiamos a construir uma estratégia de trading para o par USDJPY. Vamos negociar padrões de candles que são formados no gráfico diário, pois eles potencialmente têm mais força por trás deles. Nossa estratégia inicial foi lucrativa, o que nos encorajou a continuar refinando a estratégia e adicionando camadas extras de segurança, para proteger o capital obtido.
Redes neurais em trading: Ator–Diretor–Crítico (Actor–Director–Critic)
Propomos conhecer o framework Actor-Director-Critic, que combina aprendizado hierárquico e uma arquitetura com múltiplos componentes para criar estratégias de trading adaptativas. Neste artigo, analisamos em detalhe como o uso do Diretor para classificar as ações do Ator ajuda a otimizar decisões de trading de forma eficiente e a aumentar a robustez dos modelos nas condições dos mercados financeiros.
Otimização de recifes de coral — Coral Reefs Optimization (CRO)
Neste artigo é apresentada uma análise abrangente do algoritmo de otimização de recifes de coral (CRO), um método meta-heurístico inspirado nos processos biológicos de formação e desenvolvimento de recifes de coral. Ele modela aspectos-chave da evolução dos corais: reprodução externa e interna, fixação de larvas, reprodução assexuada e competição por espaço limitado no recife. É dada atenção especial à versão aprimorada do algoritmo.
Trading por algoritmo: IA e seu caminho para os topos dourados
Neste artigo, é demonstrado um método de criação de estratégias de trading para o ouro usando aprendizado de máquina. Ao analisar o método proposto para a previsão de séries temporais sob diferentes ângulos, é possível identificar suas vantagens e desvantagens em comparação com outras formas de criação de sistemas de trading baseadas somente na análise e previsão de séries temporais financeiras.
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 5): Volatility Navigator EA
Determinar a direção do mercado pode ser simples, mas saber quando entrar pode ser desafiador. Como parte da série intitulada "Desenvolvimento do Kit de Ferramentas de Análise de Price Action", tenho o prazer de apresentar mais uma ferramenta que fornece pontos de entrada, níveis de take profit e definições de stop loss. Para isso, utilizamos a linguagem de programação MQL5. Vamos nos aprofundar em cada etapa neste artigo.
Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 9): Expert Advisor de Múltiplas Estratégias (III)
Bem-vindo à terceira parte da nossa série sobre tendências! Hoje, vamos nos aprofundar no uso de divergência como estratégia para identificar pontos de entrada ideais dentro da tendência diária predominante. Também apresentaremos um mecanismo personalizado de proteção de lucro, semelhante a um trailing stop-loss, mas com melhorias exclusivas. Além disso, vamos atualizar o Trend Constraint Expert para uma versão mais avançada, incorporando uma nova condição de execução de trade para complementar as já existentes. À medida que avançamos, continuaremos explorando a aplicação prática do MQL5 no desenvolvimento algorítmico, fornecendo a você percepções mais detalhadas e técnicas acionáveis.
Análise angular dos movimentos de preço: um modelo híbrido de previsão dos mercados financeiros
O que é análise angular dos mercados financeiros? Como usar os ângulos de movimento de preço e o aprendizado de máquina para prever com precisão de 67? Como combinar um modelo de regressão e um modelo de classificação com características angulares e obter um algoritmo funcional? O que Gann tem a ver com isso? Por que os ângulos de movimento do preço são bons indicadores para o aprendizado de máquina?
Definição de sobrecompra e sobrevenda segundo a teoria do caos
Determinamos as zonas de sobrecompra e sobrevenda do mercado a partir da teoria do caos: uma integração dos princípios da teoria do caos, da geometria fractal e das redes neurais para prever os mercados financeiros. O estudo demonstra o uso do expoente de Lyapunov como medida da natureza caótica do mercado e a adaptação dinâmica dos sinais de trade. A metodologia inclui um algoritmo de geração de ruído fractal, ativação tangencial hiperbólica e otimização com momento.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)
O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.
Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)
O artigo descreve uma abordagem inovadora no campo da otimização, que combina a competição espacial entre soluções com o estreitamento adaptativo do espaço de busca, tornando o Battle Royale Optimizer uma ferramenta promissora para análise financeira.
Simulação de mercado: Position View (XVIII)
Neste artigo, mostrei da forma o mais didática possível. Como você pode conseguir modificar e gerar um código que seja capaz de cumprir alguns objetivos. Isto modificando o mínimo possível um código já existente. Iremos adicionar um indicador de volume, ao mesmo tempo impedir que o usuário ou operador venha a remover objetos criados pelo indicador de posição.
Do básico ao intermediário: Filas, Listas e Árvores (VII)
Neste artigo, iremos demonstrar e explicar de uma maneira bastante lucida, como ocorre a remoção de um node de uma árvore. Algo que na maior parte das vezes, mais gera dúvidas e confusão na mente de iniciantes do que necessariamente os ajuda a entender como todo o processo acontece. E por que ele precisa ser feito desta ou daquela maneira.
Aprendizado de máquina em trading direcional de tendência com o exemplo do ouro
Este artigo discute uma abordagem de trading apenas em uma direção escolhida (compra ou venda). Para isso, é utilizada a técnica de inferência causal e aprendizado de máquina.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)
Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
Expert Advisor de scalping Ilan 3.0 AI com aprendizado de máquina
Lembra do EA Ilan 1.6 Dynamic? Vamos tentar aprimorá-lo com aprendizado de máquina! Vamos reviver esse antigo projeto neste artigo e adicionar aprendizado de máquina com uma tabela Q. Passo a passo.
Simulação de mercado: Position View (XVII)
No artigo anterior, fizemos com que o indicador, nos mostrasse o resultado financeiro. Porém, nem todos gostam de fazer uso de tal modo de visualização. O motivo pode variar de operador para operador. Mas em alguns casos o motivo de fato me parece bastante plausível e justificável. Fazer as atualizações no código para promover isto. Não é nem de longe uma das tarefas mais complicadas. Na verdade é algo bastante simples e singelo. Assim neste artigo, veremos como fazer este tipo de coisa.
Do básico ao intermediário: Filas, Listas e Árvores (VI)
Neste artigo iremos retomar a implementação do que seria uma árvore. Agora que temos os conceitos básicos sobre como um constructor e destructor funcionam. Poderemos finalmente corrigir o código visto no último artigo. Mas se prepare para uma verdadeira aventura dentro da programação MQL5.
Métodos de conjunto para aprimorar previsões numéricas em MQL5
Neste artigo, apresentamos a implementação de vários métodos de aprendizagem de conjunto em MQL5 e examinamos sua eficácia em diferentes cenários.
Portfolio Risk Model using Kelly Criterion and Monte Carlo Simulation
Por décadas, traders vêm utilizando a fórmula do Critério de Kelly para determinar a proporção ideal de capital a ser alocada em um investimento ou aposta, a fim de maximizar o crescimento de longo prazo enquanto minimiza o risco de ruína. No entanto, seguir cegamente o Critério de Kelly utilizando o resultado de um único backtest costuma ser perigoso para traders individuais, pois, na negociação ao vivo, a vantagem de trading diminui com o tempo, e o desempenho passado não é garantia de resultado futuro. Neste artigo, apresentarei uma abordagem realista para aplicar o Critério de Kelly para alocação de risco de um ou mais EAs no MetaTrader 5, incorporando resultados de simulação de Monte Carlo provenientes do Python.
Simulação de mercado: Position View (XVI)
Neste artigo, faremos as modificações necessárias para que o indicador de posição venha a nos apresentar um resultado financeiro. Isto para que o operador, possa ter uma noção do financeiro que estaria sendo obtido em uma posição aberta. Além deste objetivo, aqui trarei para você, um conhecimento que muitos não tem. Mesmo fazendo uso da linguagem MQL5 a muito tempo. Tal conhecimento é justamente como fazer uso de variáveis estáticas, para conseguir um compartilhamento de memória. Isto para evitar declarar uma variável global no código principal.
Do básico ao intermediário: Classes (III)
Neste artigo será demonstrado como podemos controlar melhor o nosso código. Isto quando estivermos efetuando uma programação orientada em objetos. Apesar de que ainda, estamos apenas no inicio do que pretendo abordar quando o assunto é programação orientada em objetos. Mas o que será visto aqui, lhe ajudará a entender diversas coisas. Minimizando assim futuras dúvidas que podem surgir.
Criando um Painel de Administração de Trading em MQL5 (Parte VIII): Painel de Análises
Hoje, aprofundamos a incorporação de métricas de trading úteis dentro de uma janela especializada integrada ao EA do Painel de Administração. Esta discussão foca na implementação em MQL5 para desenvolver um Painel de Análises e destaca o valor dos dados que ele fornece aos administradores de trading. O impacto é amplamente educacional, pois lições valiosas são extraídas do processo de desenvolvimento, beneficiando tanto desenvolvedores iniciantes quanto experientes. Este recurso demonstra as oportunidades ilimitadas que esta série de desenvolvimento oferece ao equipar gestores de operações com ferramentas avançadas de software. Além disso, exploraremos a implementação das classes PieChart e ChartCanvas como parte da expansão contínua das capacidades do painel de Administração de Trading.
MQL5 Trading Toolkit (Parte 4): Desenvolvendo uma Biblioteca EX5 de Gerenciamento de Histórico
Aprenda a recuperar, processar, classificar, ordenar, analisar e gerenciar posições fechadas, ordens e históricos de negociações usando MQL5, criando uma ampla biblioteca EX5 de Gerenciamento de Histórico com um método detalhado passo a passo.
Simulação de mercado: Position View (XV)
Neste artigo, tentarei explicar da forma o mais simples possível como você pode fazer uso de troca de mensagens entre aplicações. Isto para que consiga de fato, desenvolver algo realmente funcional e de maneira o mais simples e eficaz quando for possível ser feito. Não sei se de fato conseguirei passar a ideia por detrás do conceito. Já que ele não é tão simples de ser entendido e compreendido por parte de quem o está vendo pela primeira vez. Aproveitando mostrarei como você pode fazer, para conseguir modificar o sistema de replay/simulador, a fim de poder depurar um Expert Advisor ou um outro código qualquer que você esteja criando. Isto de maneira igualmente simples e direta.
Como publicar código no CodeBase: Guia prático
Neste artigo, vamos analisar, com exemplos reais, como publicar diferentes tipos de programas para o terminal na Biblioteca de códigos-fonte em linguagem MQL5.
Negociando com o Calendário Econômico do MQL5 (Parte 5): Aprimorando o Painel com Controles Responsivos e Botões de Filtro
Neste artigo, criamos botões para filtros de pares de moedas, níveis de importância, filtros de tempo e uma opção de cancelamento para melhorar o controle do painel. Esses botões são programados para responder dinamicamente às ações do usuário, permitindo uma interação contínua. Também automatizamos seu comportamento para refletir mudanças em tempo real no painel. Isso aprimora a funcionalidade geral, a mobilidade e a responsividade do painel.
Otimização com neuroboids — Neuroboids Optimization AlgorithmN 2 (NOA2)
O novo algoritmo autoral de otimização NOA2 (Neuroboids Optimization Algorithm 2) combina os princípios da inteligência de enxame com controle baseado em redes neurais. O NOA2 funde a mecânica do comportamento coletivo dos neuroboids com um sistema neural adaptativo, que permite aos agentes ajustar seu comportamento de forma autônoma durante o processo de busca pelo ótimo. O algoritmo está em fase ativa de desenvolvimento e demonstra potencial para resolver tarefas complexas de otimização.
Desenvolvimento de estratégias de trading de tendência baseadas em aprendizado de máquina
Neste artigo é proposto um método original para o desenvolvimento de estratégias de tendência. Você aprenderá como é possível fazer a anotação dos exemplos de treinamento e treinar classificadores com base neles. O resultado final são sistemas de trading prontos para uso, operando sob o controle do terminal MetaTrader 5.
Reimaginando Estratégias Clássicas (Parte 12): Estratégia de Breakout EURUSD
Junte-se a nós hoje enquanto nos desafiamos a construir uma estratégia de negociação de rompimento lucrativa em MQL5. Selecionamos o par EURUSD e tentamos negociar rompimentos de preço no período de uma hora. Nosso sistema teve dificuldade em distinguir entre falsos rompimentos e o início de tendências reais. Camadas de filtros foram adicionadas ao sistema para minimizar perdas e aumentar ganhos. No final, conseguimos tornar nosso sistema lucrativo e menos propenso a falsos rompimentos.
Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)
Este artigo apresenta o algoritmo de otimização de força central (CFO), inspirado nas leis da gravitação. É explorado como os princípios da atração física podem resolver problemas de otimização, onde soluções mais pesadas atraem seus análogos menos bem-sucedidos.
Ondas triangulares e em forma de serra: ferramentas para o trader
Um dos métodos de análise técnica é a análise de ondas. Neste artigo, vamos examinar ondas de um tipo um pouco incomum, nomeadamente as triangulares e as em forma de serra. Com base nessas ondas, é possível construir vários indicadores técnicos que permitem analisar o movimento do preço no mercado.
Do básico ao intermediário: Classes (II)
Este artigo foi pensado para ser o mais didático possível. Isto porque o tema que será abordado aqui, por si só já gera muita confusão na cabeça de muita gente. Então meu caro leitor, procure experimentar na prática o que estará sendo visto aqui em forma de texto. E qualquer dúvida, não deixe de comentar. Pois de fato entender destructores não é uma das tarefas mais simples.
Introdução ao MQL5 (Parte 10): Um Guia para Iniciantes sobre como Trabalhar com Indicadores Embutidos no MQL5
Este artigo introduz o trabalho com indicadores embutidos no MQL5, com foco na criação de um Expert Advisor (EA) baseado em RSI usando uma abordagem orientada a projeto. Você aprenderá a recuperar e utilizar valores de RSI, lidar com varreduras de liquidez e aprimorar a visualização de trades usando objetos no gráfico. Além disso, o artigo enfatiza a gestão eficaz de risco, incluindo a definição de risco baseado em porcentagem, implementação de relações risco-retorno e aplicação de modificações de risco para garantir lucros.
Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)
Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.
Desenvolvimento do Conjunto de Ferramentas de Análise de Price Action – Parte (4): Analytics Forecaster EA
Estamos indo além de simplesmente visualizar métricas analisadas nos gráficos, ampliando a perspectiva para incluir a integração com o Telegram. Essa melhoria permite que resultados importantes sejam entregues diretamente ao seu dispositivo móvel por meio do aplicativo Telegram. Junte-se a nós enquanto exploramos essa jornada neste artigo.
Desenvolvendo um EA multimoeda (Parte 25): Conectando uma nova estratégia (II)
Neste artigo, continuaremos a conectar uma nova estratégia ao sistema de otimização automática já criado. Vamos ver quais mudanças devem ser feitas no EA responsável pela criação do projeto de otimização e nos EAs das segunda e terceira etapas.
Simulação de mercado: Position View (XIV)
O que vamos fazer agora, só é possível por que o MQL5, utiliza o mesmo princípio de funcionamento de uma programação baseada em eventos. Tal modelo de programação, é bastante usada na criação de DLL. Sei que no primeiro momento a coisa toda parecerá extremamente confusa e sem nenhuma lógica. Mas neste artigo, irei introduzir de maneira um pouco mais sólida tais conceitos, para que você iniciante consiga compreender adequadamente o que está acontecendo. Entender o que irei começar a explicar neste artigo é algo que poderá lhe ajudar muito na vida, como programador.
Do básico ao intermediário: Classes (I)
Neste artigo, começaremos a ver o que seria de fato uma classe, e por que elas foram criadas. Apesar deste ser um assunto bastante interessante, aqui iremos focar, nas questões relacionadas ao que rege e tange a programação em MQL5. Sendo este artigo, apenas uma introdução ao assunto.
Migrando para o MQL5 Algo Forge (Parte 4): Trabalhando com versões e lançamentos
Vamos continuar o desenvolvimento dos projetos Simple Candles e Adwizard, detalhando os aspectos do uso do sistema de controle de versão e do repositório MQL5 Algo Forge.
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)
Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.