取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
preview
株式市場における非線形回帰モデル

株式市場における非線形回帰モデル

株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。
preview
算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ

本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。
preview
外国為替データ分析における連関規則の使用

外国為替データ分析における連関規則の使用

スーパーマーケットの小売分析で使われる予測ルールを、実際のFX市場に応用する方法は?クッキー、牛乳、パンの購買傾向と株式市場の取引が関係する方法は?この記事では、連関規則を活用した革新的なアルゴリズム取引手法について解説します。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
preview
原子軌道探索(AOS)アルゴリズム:改良版

原子軌道探索(AOS)アルゴリズム:改良版

第2部では、AOS (Atomic Orbital Search)アルゴリズムの改良版の開発を続け、特定の演算子に注目して効率性と適応性の向上を図ります。アルゴリズムの基礎とメカニズムを分析した後、複雑な解探索空間を解析する能力を高めるための性能向上のアイデアについて議論し、最適化ツールとしての機能を拡張する新しいアプローチを提案します。
preview
取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

LSEAttentionフレームワークは、Transformerアーキテクチャの改善を提供します。この手法は、特に長期の多変量時系列予測のために設計されました。提案されたアプローチは、従来のTransformerでよく遭遇するエントロピーの崩壊や学習の不安定性の問題を解決するために応用可能です。
preview
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
preview
Numbaを使用したPythonの高速取引ストラテジーテスター

Numbaを使用したPythonの高速取引ストラテジーテスター

この記事では、Numbaを使った機械学習モデルのための高速ストラテジーテスターを実装しています。純粋なPythonのストラテジーテスターと比べて50倍速く動作します。このライブラリを使って特にループを含む数学計算を高速化することを推奨しています
preview
原子軌道探索(AOS)アルゴリズム

原子軌道探索(AOS)アルゴリズム

この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。
preview
取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)

取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)

HypDiffフレームワークで提案されているように、双曲潜在空間における初期データのエンコーディングに異方性拡散プロセスを用いることで、現在の市場状況におけるトポロジー的特徴を保持しやすくなり、分析の質を向上させることができます。前回の記事では、提案されたアプローチの実装をMQL5を用いて開始しました。今回はその作業を継続し、論理的な完結に向けて進めていきます。
preview
取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)

取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)

この記事では、異方性拡散プロセスを用いた双曲潜在空間における初期データのエンコーディング手法について検討します。これにより、現在の市場状況におけるトポロジー的特徴をより正確に保持でき、分析の質が向上します。
preview
レーベンバーグ・マルカートアルゴリズムを用いた多層パーセプトロンのトレーニング

レーベンバーグ・マルカートアルゴリズムを用いた多層パーセプトロンのトレーニング

この記事では、順伝播型(フィードフォワード)ニューラルネットワークの学習におけるレーベンバーグ・マルカートアルゴリズムの実装を紹介します。また、scikit-learn Pythonライブラリのアルゴリズムと性能比較もおこなっています。まずは、勾配降下法、モーメンタム付き勾配降下法、確率的勾配降下法などのより単純な学習法について簡単に触れます。
preview
Pythonによる農業国通貨への天候影響分析

Pythonによる農業国通貨への天候影響分析

天候と外国為替にはどのような関係があるのでしょうか。古典的な経済理論は、天候のような要因が市場の動きに与える影響を長い間無視してきました。しかし、すべてが変わりました。天候条件と農業通貨の市場でのポジションとの間に、どのようなつながりがあるのかを探ってみましょう。
preview
取引におけるニューラルネットワーク:方向性拡散モデル(DDM)

取引におけるニューラルネットワーク:方向性拡散モデル(DDM)

本稿では、前向き拡散過程においてデータ依存的な異方性および方向性を持つノイズを活用するDirectional Diffusion Models(DDM、方向性拡散モデル)について議論し、意味のあるグラフ表現を捉える手法を紹介します。
preview
取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。
preview
取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

本連載の前回の記事では、Atom-Motif Contrastive Transformer (AMCT)フレームワークについて取り上げました。これは、対照学習を用いて、基本要素から複雑な構造に至るまでのあらゆるレベルで重要なパターンを発見することを目的とした手法です。この記事では、MQL5を用いたAMCTアプローチの実装を引き続き解説していきます。
preview
ALGLIBライブラリの最適化手法(第2回):

ALGLIBライブラリの最適化手法(第2回):

この記事では、ALGLIBライブラリにおける残りの最適化手法の検討を続けていきます。特に、複雑な多次元関数でのテストに重点を置きます。これにより、各アルゴリズムの効率性を評価できるだけでなく、さまざまな条件下における強みと弱みを明らかにすることができます。
preview
ALGLIBライブラリの最適化手法(第1回):

ALGLIBライブラリの最適化手法(第1回):

この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。
preview
取引におけるニューラルネットワーク:対照パターンTransformer

取引におけるニューラルネットワーク:対照パターンTransformer

Contrastive Transformerは、個々のローソク足のレベルと、全体のパターンに基づいて市場を分析するよう設計されています。これにより、市場トレンドのモデリングの質が向上します。さらに、ローソク足とパターンの表現を整合させるために対照学習を用いることで、自己調整が促され、予測の精度が高まります。
preview
取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

モデルを使用して市場の状況を分析する場合、主にローソク足に注目します。しかし、ローソク足パターンが将来の価格変動を予測するのに役立つことは長い間知られていました。この記事では、これら両方のアプローチを統合できる方法について説明します。
preview
取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

自己教師あり学習は、ラベル付けされていない大量のデータを分析する効果的な手段となり得ます。この手法の効率性は、モデルが金融市場特有の特徴に適応することで実現され、従来手法の有効性も向上します。本記事では、入力間の相対的な依存関係や関係性を考慮した新しいAttention(注意)機構を紹介します。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション

取引におけるニューラルネットワーク:制御されたセグメンテーション

この記事では、複雑なマルチモーダルインタラクション分析と特徴量理解の方法について説明します。
preview
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第60回):移動平均とストキャスティクスパターンを用いた推論(ワッサースタインVAE)

知っておくべきMQL5ウィザードのテクニック(第60回):移動平均とストキャスティクスパターンを用いた推論(ワッサースタインVAE)

MA(移動平均)とストキャスティクスの補完的な組み合わせに着目し、教師あり学習および強化学習を経た後の段階において、推論が果たしうる役割を検証します。推論にはさまざまなアプローチが存在しますが、この記事では変分オートエンコーダ(VAE: Variational Auto-Encoder)を用いる方法を採用します。まずはPythonでこのアプローチを探求し、その後、訓練済みモデルをONNX形式でエクスポートし、MetaTraderのウィザードで構築したエキスパートアドバイザー(EA)で活用します。
preview
データサイエンスとML(第36回):偏った金融市場への対処

データサイエンスとML(第36回):偏った金融市場への対処

金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。
preview
古典的な戦略を再構築する(第14回):高確率セットアップ

古典的な戦略を再構築する(第14回):高確率セットアップ

高確率セットアップ(high probability setups)は、私たちの取引コミュニティではよく知られていますが、残念ながら明確には定義されていません。この記事では、「高確率セットアップ」とは具体的に何かを、経験的かつアルゴリズム的な方法で定義し、それを特定して活用することを目指します。勾配ブースティング木を用いることで、任意の取引戦略のパフォーマンスを向上させる方法、そしてコンピュータに対して「何をすべきか」をより明確かつ意味のある形で伝える手段を、読者に示します。
preview
既存のMQL5取引戦略へのAIモデルの統合

既存のMQL5取引戦略へのAIモデルの統合

このトピックでは、強化学習モデル(LSTMなど)や機械学習ベースの予測モデルのような訓練済みAIモデルを、既存のMQL5取引戦略に組み込むことに焦点を当てています。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識

PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識

次元削減手法は、機械学習モデルのパフォーマンスを向上させるために広く用いられています。ここでは、UMAP (Uniform Manifold Approximation and Projection)という比較的新しい手法について説明します。UMAPは、古い手法に見られるデータの歪みや人工的な構造といった欠点を明確に克服することを目的として開発されました。UMAPは非常に強力な次元削減技術であり、似たローソク足を新たに効果的にグループ化できるため、アウトオブサンプル(未知データ)に対する誤差率を低減し、取引パフォーマンスを向上させることができます。
preview
知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

MAとストキャスティクスを使用したDDPGに関する前回の記事に引き続き、今回は、DDPGの実装に欠かせない他の重要な強化学習クラスを検証していきます。主にPythonでコーディングしていますが、最終的には訓練済みネットワークをONNX形式でエクスポートし、MQL5に組み込んでウィザードで構築したエキスパートアドバイザー(EA)のリソースとして統合します。
preview
知っておくべきMQL5ウィザードのテクニック(第58回):移動平均と確率的オシレーターパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第58回):移動平均と確率的オシレーターパターンを用いた強化学習(DDPG)

移動平均とストキャスティクスはよく使われるインジケーターで、前回の記事ではこの2つの組み合わせパターンを教師あり学習ネットワークで分析して、どのパターンが使えそうかを確認しました。今回はそこから一歩進めて、訓練済みネットワークに強化学習を組み合わせたらパフォーマンスにどんな影響があるかを見ていきます。テスト期間はかなり短いので、その点は踏まえておいてください。とはいえ、今回もMQL5ウィザードのおかげで、コード量はかなり少なくて済んでいます。
preview
データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法

データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法

NumPyライブラリは、Pythonプログラミング言語においてほぼすべての機械学習アルゴリズムの中核を支えています。本記事では、高度なモデルやアルゴリズムの構築を支援するために、複雑なコードをまとめたモジュールを実装していきます。
preview
ダーバスボックスブレイクアウト戦略における高度な機械学習技術の探究

ダーバスボックスブレイクアウト戦略における高度な機械学習技術の探究

ニコラス・ダーバスによって考案された「ダーバスボックスブレイクアウト戦略」は、株価が一定の「ボックス」レンジを上抜けたときに強い上昇モメンタムが示唆されることから、買いシグナルを見極めるためのテクニカル取引手法です。本記事では、この戦略コンセプトを例として用い、機械学習の3つの高度な技術を探っていきます。それは、取引をフィルタリングするのではなくシグナルを生成するために機械学習モデルを使用すること、離散的ではなく連続的なシグナルを用いること、異なる時間枠で学習されたモデルを使って取引を確認すること、の3点です。
preview
知っておくべきMQL5ウィザードのテクニック(第57回):移動平均とストキャスティクスを用いた教師あり学習

知っておくべきMQL5ウィザードのテクニック(第57回):移動平均とストキャスティクスを用いた教師あり学習

移動平均線やストキャスティクスは非常に一般的なテクニカル指標ですが、その「遅行性」のために一部のトレーダーから敬遠されがちです。この3部構成のミニシリーズでは、機械学習の3つの主要なアプローチを軸に、この偏見が本当に正当なものなのか、それとも実はこれらの指標に優位性が隠れているのかを検証していきます。検証には、ウィザードで組み立てられたエキスパートアドバイザー(EA)を用います。
preview
MQL5における予測および分類評価のためのリサンプリング手法

MQL5における予測および分類評価のためのリサンプリング手法

本記事では、1つのデータセットを訓練(学習)用と検証用の両方として使用するモデル評価手法について、理論と実装の両面から検討します。
preview
受信者動作特性曲線の紹介

受信者動作特性曲線の紹介

ROC曲線は、分類器の性能を評価するために使用されるグラフ表現です。ROC曲線は比較的単純に見えますが、実際に使用する際には、よくある誤解や陥りやすい落とし穴があります。この記事の目的は、分類器の性能評価を理解しようとする実務者に向けて、ROC曲線を紹介することです。
preview
データサイエンスとML(第34回):時系列分解、株式市場を核心にまで分解

データサイエンスとML(第34回):時系列分解、株式市場を核心にまで分解

ノイズが多く、予測が難しいデータで溢れる世界では、意味のあるパターンを特定するのは困難です。この記事では、データをトレンド、季節パターン、ノイズといった主要な要素に分解する強力な分析手法「季節分解」について解説します。こうしてデータを分解することで、隠れた洞察を見つけ、より明確で解釈しやすい情報を得ることが可能になります。
preview
知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

強化学習において、リプレイバッファは特にDQNやSACのようなオフポリシーアルゴリズムにおいて重要な役割を果たします。これにより、メモリバッファのサンプリング処理が注目されます。たとえばSACのデフォルト設定では、このバッファからランダムにサンプルを取得しますが、Prioritized Experience Replay (PER)を用いることで、TDスコア(時間差分誤差)に基づいてサンプリングを調整することができます。本稿では、強化学習の意義を改めて確認し、いつものように交差検証ではなく、この仮説だけを検証する、ウィザードで組み立てたエキスパートアドバイザー(EA)を用いて考察します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

本日は、勝ちトレードでストップアウトされる回数を最小限に抑えるためのアルゴリズム的手法を探るディスカッションにご参加ください。この問題は非常に難易度が高く、取引コミュニティで見られる多くの提案は、明確で一貫したルールに欠けているのが実情です。私たちはこの課題に対してアルゴリズム的なアプローチを用いることで、トレードの収益性を高め、1回あたりの平均損失を減らすことに成功しました。とはいえ、ストップアウトを完全に排除するには、まださらなる改良が必要です。私たちの解決策は、それには至らないものの、誰にとっても試す価値のある良い第一歩です。
preview
知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習

知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習

Soft Actor Critic (SAC)は、以前の記事で紹介した強化学習アルゴリズムです。その際には、効率的にネットワークを学習させる手法としてPythonやONNXの活用についても触れました。今回は、このアルゴリズムを改めて取り上げ、Pythonでよく使われるテンソルや計算グラフを活用することを目的としています。