MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
血液型遺伝最適化(BIO)

血液型遺伝最適化(BIO)

人間の血液型の遺伝システムに着想を得た、新しい集団最適化アルゴリズム「血液型遺伝最適化(BIO)」を紹介します。このアルゴリズムでは、各解がそれぞれ固有の「血液型」を持ち、その血液型が進化の方法を決定します。自然界において子の血液型が特定の遺伝ルールに従って受け継がれるように、BIOでは新しい解が継承と突然変異の仕組みを通じて特性を獲得します。
preview
市場シミュレーション(第9回):ソケット(III)

市場シミュレーション(第9回):ソケット(III)

本日の記事は前回の記事の続編です。今回はエキスパートアドバイザー(EA)の実装を取り上げ、特にサーバー側コードがどのように実行されるかに焦点を当てます。前回の記事で示したコードだけでは、すべてを期待どおりに動作させるには不十分であるため、もう少し深く掘り下げる必要があります。そのため、これから起こることをよりよく理解するには、両方の記事を読む必要があります。
preview
IBMの量子コンピュータを使ってすべての価格変動パターンを解析する

IBMの量子コンピュータを使ってすべての価格変動パターンを解析する

IBMの量子コンピュータを使用してすべての価格変動オプションを発見します。まるでSFの話のようですが、これが取引における量子コンピューティングの世界です。
preview
円探索アルゴリズム(CSA)

円探索アルゴリズム(CSA)

本記事では、円の幾何学的性質に基づいた新しいメタヒューリスティック最適化アルゴリズム「円探索アルゴリズム(Circle Search Algorithm, CSA)」を紹介します。本アルゴリズムは、最適解を探索するために点を接線に沿って移動させる原理を使用し、大域探索と局所探索のフェーズを組み合わせています。
preview
外国為替におけるフィボナッチ(第1回):価格と時間の関係を調べる

外国為替におけるフィボナッチ(第1回):価格と時間の関係を調べる

市場はフィボナッチに基づく関係性をどのように観測しているのでしょうか。各項が直前の2つの項の和になっているこの数列(1, 1, 2, 3, 5, 8, 13, 21...)は、ウサギの個体数の増加を説明するだけのものではありません。私たちは、「世界のあらゆるものは数の一定の関係に従う」というピタゴラス派の仮説を考察します。
preview
市場シミュレーション(第8回):ソケット(II)

市場シミュレーション(第8回):ソケット(II)

ソケットを使って何か実用的なものを作ってみましょう。今回の記事では、ミニチャットの作成を始めます。一緒にどのようにおこなうかを見ていきましょう。とても面白い内容になるでしょう。ここで提供するコードは教育目的のみの使用を想定しています。商用目的や既製のアプリケーションでの使用には適していません。ソケット上で送信されるデータは安全に保護されず、内容が第三者からアクセス可能になる可能性があるためです。
preview
市場シミュレーション(第7回):ソケット(I)

市場シミュレーション(第7回):ソケット(I)

ソケットについてご存じでしょうか。また、MetaTrader 5でどのように使用するかをご存じでしょうか。もし答えが「いいえ」であれば、ここから一緒に学んでいきましょう。本日の記事では、その基礎について解説します。同じことを実現する方法はいくつも存在しますが、私たちが常に重視するのは結果です。そこで、MetaTrader 5からExcelのような他のプログラムへデータを転送するための、実際にシンプルな方法が存在することを示したいと思います。ただし、本来の主な目的は、MetaTrader 5からExcelへデータを送ることではなく、その逆、つまりExcelやその他のプログラムからMetaTrader 5へデータを転送することにあります。
preview
ロイヤルフラッシュ最適化(RFO)

ロイヤルフラッシュ最適化(RFO)

オリジナルの「ロイヤルフラッシュ最適化」アルゴリズムは、最適化問題を解決するための新しいアプローチを提示しています。この手法では、遺伝的アルゴリズムで一般的に用いられる古典的な二進符号化を、ポーカーの原理に着想を得たセクターベースのアプローチに置き換えています。RFOは、基本原理を単純化することで、効率的かつ実用的な最適化手法が実現できることを示しています。本記事では、アルゴリズムの詳細な解析とテスト結果を紹介します。
preview
弁証法的探索(DA)

弁証法的探索(DA)

本記事では、弁証法の考え方に着想を得た大域最適化手法である弁証法的アルゴリズム(Dialectical Algorithm, DA)を紹介します。このアルゴリズムは、集団を「思索的思考者(speculative thinkers)」と「実践的思考者(practical thinkers)」に独自に分割する点が特徴です。テストでは、低次元問題において最大98%の高い性能を示し、全体的な効率は57.95%に達しました。本記事ではこれらの指標を解説し、アルゴリズムの詳細な説明とさまざまな関数に対する実験結果を提示します。
preview
金融時系列予測のための生物学的ニューロン

金融時系列予測のための生物学的ニューロン

時系列予測のために生物学的に正しいニューロンシステムを構築します。ニューラルネットワークのアーキテクチャにプラズマ的な環境を導入することで、一種の「集合知」が生まれます。そこでは、各ニューロンが直接的な結合だけでなく、長距離の電磁相互作用を通じてもシステム全体の動作に影響を与えます。このようなニューラル脳モデリングシステムが市場においてどのような性能を発揮するのかを見ていきます。
preview
Pythonを使用したボラティリティ予測インジケーターの作成

Pythonを使用したボラティリティ予測インジケーターの作成

本記事では、二値分類を使って将来の極端なボラティリティを予測します。さらに、機械学習を活用した極端ボラティリティ予測インジケーターの開発もおこないます。
preview
市場シミュレーション(第6回):MetaTrader 5からExcelへの情報の転送

市場シミュレーション(第6回):MetaTrader 5からExcelへの情報の転送

多くの人、特にプログラマーではない人は、MetaTrader 5と他のプログラムとの間で情報をやり取りすることは非常に難しいと感じます。その代表的な例がExcelです。多くの人がExcelをリスク管理や運用管理のための手段として利用しています。Excelは非常に優れたプログラムであり、VBAプログラマーでなくても比較的容易に習得できます。ここでは、MetaTrader 5とExcelの間に接続を確立する方法について説明します。方法は非常にシンプルなものです。
preview
市場シミュレーション(第5回):C_Ordersクラスの作成(II)

市場シミュレーション(第5回):C_Ordersクラスの作成(II)

本記事では、Chart Tradeとエキスパートアドバイザー(EA)が連携して、ユーザーが保有しているすべてのポジションを決済する要求をどのように処理するのかを解説します。一見すると単純な処理に思えるかもしれませんが、実際には注意すべきいくつかの複雑な点があります。
preview
市場シミュレーション(第4回):C_Ordersクラスの作成(I)

市場シミュレーション(第4回):C_Ordersクラスの作成(I)

本記事では、取引サーバーに注文を送信できるようにするためのC_Ordersクラスの作成を開始します。これは少しずつ進めていきますが、目的は、メッセージングシステムを通じてこれがどのようにおこなわれるのかを詳細に説明することです。
preview
初心者からエキスパートへ:パラメータ制御ユーティリティ

初心者からエキスパートへ:パラメータ制御ユーティリティ

従来のEAやインジケーターの入力プロパティを、リアルタイムで操作可能なオンチャートのコントロールインターフェースへと変換することを想像してみてください。本記事は、これまでに取り組んできたMarket Periods Synchronizerインジケーターでの基礎的な成果を土台とし、上位足(HTF)の市場構造を可視化し、管理する手法を大きく進化させるものです。ここでは、その概念を完全にインタラクティブなユーティリティへと昇華させ、動的な操作性と強化されたマルチタイムフレーム(MTF)のプライスアクションの可視化を、チャート上に直接統合したダッシュボードとして実装します。この革新的なアプローチが、トレーダーとツールの関わり方をどのように変えていくのか、一緒に見ていきましょう。
preview
共和分株式による統計的裁定取引(第6回):スコアリングシステム

共和分株式による統計的裁定取引(第6回):スコアリングシステム

本記事では、共和分株式の統計的裁定取引に基づく平均回帰戦略のスコアリングシステムを提案します。流動性や取引コストから、共和分ベクトルの数(ランク)や回帰までの時間に至るまでの基準を示しつつ、時間足やルックバック期間のような戦略的基準も考慮し、スコアランキングを正しく評価する前に検討しています。バックテストの再現に必要なファイルも提供され、その結果についてもコメントしています。
preview
プライスアクション分析ツールキットの開発(第47回):MetaTrader 5で外国為替セッションとブレイクアウトを追跡する

プライスアクション分析ツールキットの開発(第47回):MetaTrader 5で外国為替セッションとブレイクアウトを追跡する

世界中の市場セッションは1日の取引のリズムを形成しており、それらの重なりを理解することは、エントリーやエグジットのタイミングを見極めるうえで非常に重要です。本記事では、これらの世界的な取引時間をチャート上で視覚的に再現するインタラクティブな取引セッションEAを構築します。このEAは、アジア、東京、ロンドン、ニューヨークの各セッションを色分けされた矩形として自動的に描画し、各市場の開始と終了に応じてリアルタイムで更新します。また、チャート上のトグルボタン、動的な情報パネル、そしてライブのステータスやブレイクアウトメッセージを表示するスクロール式のティッカーヘッドラインも搭載しています。複数のブローカーでテストされたこのEAは、精度とデザイン性を兼ね備えており、ボラティリティの移行を視覚的に把握し、セッション間のブレイクアウトを特定し、グローバル市場の動きを常に意識したトレードを可能にします。
preview
機械学習の限界を克服する(第6回):効果的なメモリクロスバリデーション

機械学習の限界を克服する(第6回):効果的なメモリクロスバリデーション

本記事では、時系列クロスバリデーションにおける従来のアプローチと、その前提に疑問を投げかける新しい考え方を比較します。特に、市場環境が時間とともに変化するという点を十分に扱えていないという、古典的手法の弱点に焦点を当てます。これらの問題を踏まえ、Effective Memory Cross-Validation (EMCV)という、ドメインを意識した検証手法を紹介します。このアプローチは、「過去データは多ければ多いほど良い」という長年の常識を見直すものです。
preview
プライスアクション分析ツールキットの開発(第46回):MQL5におけるスマートな可視化を備えたインタラクティブフィボナッチリトレースメントEAの設計

プライスアクション分析ツールキットの開発(第46回):MQL5におけるスマートな可視化を備えたインタラクティブフィボナッチリトレースメントEAの設計

フィボナッチツールは、テクニカル分析で最も人気のあるツールのひとつです。本記事では、価格の動きに応じて動的に反応するリトレースメントおよびエクステンションレベルを描画し、リアルタイムアラート、スタイリッシュなライン、ニュース風のスクロールヘッドラインを提供するインタラクティブフィボナッチEAの作成方法をご紹介します。このEAのもうひとつの大きな利点は柔軟性です。チャート上で高値(A)と安値(B)のスイング値を直接入力できるため、分析したい価格範囲を正確にコントロールできます。
preview
MQL5における二変量コピュラ(第1回):依存関係モデリングのための正規コピュラおよびtコピュラの実装

MQL5における二変量コピュラ(第1回):依存関係モデリングのための正規コピュラおよびtコピュラの実装

本記事は、MQL5における二変量コピュラ(Bivariate Copula)の実装を紹介する連載の第1回です。本記事では、正規コピュラおよびtコピュラ(スチューデントtコピュラ)の実装コードを取り上げます。また、統計的コピュラの基礎概念や関連トピックについても解説します。本記事で紹介するコードは、Hudson and Thamesが提供するArbitragelab Pythonパッケージを参考にしています。
preview
プライスアクション分析ツールキットの開発(第45回):MQL5で動的水準分析パネルを作成する

プライスアクション分析ツールキットの開発(第45回):MQL5で動的水準分析パネルを作成する

この記事では、ワンクリックで任意の価格水準をテストできる強力なMQL5ツールについて説明します。テストしたい価格を入力して分析ボタンを押すと、EAは過去のデータを瞬時にスキャンし、チャート上でその水準に触れた箇所やブレイクアウトをハイライト表示します。また、統計情報を整理されたダッシュボードに表示し、価格がその水準にどの程度反応したか、ブレイクしたか、サポートとして機能したか、レジスタンスとして働いたかを一目で確認できます。以下では、詳細な手順について解説します。
preview
初心者からエキスパートへ:市場期間同期化ツール

初心者からエキスパートへ:市場期間同期化ツール

本ディスカッションでは、上位時間足から下位時間足への同期をおこなうツールを紹介します。このツールは、上位時間足の期間にまたがる市場パターンを分析する際の課題を解決することを目的としています。MetaTrader 5に標準搭載されている期間マーカーは、制限が多く柔軟性に欠けるため、非標準の時間足には対応しにくいことがあります。そこで私たちは、MQL5言語を活用して、下位時間足のチャート上で上位時間足の構造を動的かつ視覚的に表示できるインジケーターを開発しました。このツールは、詳細な市場分析に非常に役立ちます。その機能や実装方法について詳しく知りたい方は、ぜひディスカッションにご参加ください。
preview
プライスアクション分析ツールキットの開発(第44回):MQL5でVWMAクロスオーバーシグナルEAを構築する

プライスアクション分析ツールキットの開発(第44回):MQL5でVWMAクロスオーバーシグナルEAを構築する

本記事では、MetaTrader 5向けに開発されたVWMA(出来高加重移動平均)クロスオーバーシグナルツールを紹介します。このツールは、価格動向と出来高を組み合わせることで、強気および弱気の反転ポイントを特定することを目的としています。このエキスパートアドバイザー(EA)は、チャート上に明確な買いと売りシグナルを直接表示し、豊富な情報を持つパネルを備えるとともに、ユーザーによる詳細なカスタマイズが可能で、実践的な取引戦略の強力な補助となります。
preview
取引システムの構築(第5回):構造化された取引決済による利益管理

取引システムの構築(第5回):構造化された取引決済による利益管理

利益目標まであとわずかというところで価格が反転し、ストップロスにかかってしまう。トレーリングストップによって建値で決済された直後に、市場が元の方向へ大きく動き、当初の目標を超えていく。多くのトレーダーにとって、これはおなじみの悩みでしょう。本記事では、異なるリスクリワードレシオ(RRR)で複数のエントリーを配置する手法に焦点を当て、利益を体系的に確保しながら、全体のリスク曝露を抑えるアプローチを解説します。
preview
初心者からエキスパートへ:隠れフィボナッチリトレースメントレベルの謎を解く

初心者からエキスパートへ:隠れフィボナッチリトレースメントレベルの謎を解く

本記事では、市場が反応する可能性のある非標準的なフィボナッチリトレースメントレベルを、データ駆動型の手法で発見および検証するアプローチを紹介します。MQL5での実装を想定した完全なワークフローを提示し、データ収集やバーやスイングの検出から始め、クラスタリング、統計的仮説検定、バックテスト、さらにMetaTrader 5のフィボナッチツールへの統合までを包括的にカバーします。ここでの目的は、経験的な観察に基づく推測を、統計的に裏付けられた売買シグナルへと変換する再現可能なパイプラインを構築することです。
preview
MetaTrader 5機械学習の設計図(第3回):トレンドスキャンラベリング法

MetaTrader 5機械学習の設計図(第3回):トレンドスキャンラベリング法

私たちは、データリーケージを排除するために適切なティックベースバーを用いた堅牢な特徴量設計パイプラインを構築し、さらにメタラベル付きトリプルバリア法によるラベリングという重要な課題を解決してきました。本記事では、その発展的内容として、適応的な予測期間を実現する高度なラベリング手法である「トレンドスキャニング」を取り上げます。理論の解説に続き、トレンドスキャニングによるラベルをメタラベリングと組み合わせることで、従来の移動平均交差戦略を改善する具体例を示します。
preview
取引システムの構築(第4回):ランダム決済が取引の期待値に与える影響

取引システムの構築(第4回):ランダム決済が取引の期待値に与える影響

多くのトレーダーは、エントリーの基準には忠実であっても、取引管理で苦労する状況を経験しています。正しいセットアップであっても、取引がテイクプロフィット(利確)やストップロス(損切り)の水準に達する前にパニックで決済してしまうといった感情的な判断は、資産曲線を下向きにする原因となります。では、トレーダーはこの問題をどう克服し、結果を改善できるのでしょうか。本記事では、ランダムな勝率を用いてこの問題を検証し、モンテカルロシミュレーションを通じて、トレーダーがオリジナルの目標に到達する前に合理的な水準で利益を確定することで戦略を洗練させる方法を示します。
preview
プライスアクション分析ツールキットの開発(第43回):ローソク足の確率とブレイクアウト

プライスアクション分析ツールキットの開発(第43回):ローソク足の確率とブレイクアウト

MQL5ネイティブで開発されたCandlestick Probability EAは、ローソク足データをリアルタイムかつ銘柄別の確率情報へと変換する、軽量で実用的な分析ツールです。本EAは、バー確定時にピンバー、包み足、および十字線といったパターンを分類し、ATRを考慮したフィルタリングや、任意でブレイクアウト確認をおこないます。さらに、各パターンについて、純粋なフォロー率および出来高加重フォロー率を算出することで、特定の銘柄や時間足における典型的な結果を把握することが可能です。チャート上のマーカー、コンパクトなダッシュボード、インタラクティブな切り替え機能により、検証作業や分析対象への集中を容易にします。また、詳細なCSVログをエクスポートできるため、オフラインでの検証や追加分析にも対応しています。本EAを活用することで、確率プロフィールの構築、戦略の最適化をおこない、ローソク足パターン認識を定量的な優位性へと変換できます。
preview
プライスアクション分析ツールキットの開発(第42回):ボタンロジックと統計レベルを用いたインタラクティブチャートの検証

プライスアクション分析ツールキットの開発(第42回):ボタンロジックと統計レベルを用いたインタラクティブチャートの検証

市場においてスピードと精度が重要である以上、分析ツールも市場と同じくらい賢くある必要があります。本記事では、ボタン操作に基づくエキスパートアドバイザー(EA)を紹介します。これは、価格データを瞬時に意味のある統計レベルに変換するインタラクティブなシステムです。ワンクリックで平均値、偏差、パーセンタイルなどを計算して表示し、複雑な分析をチャート上の明確なシグナルに変換します。価格が反発、押し戻し、または突破する可能性の高いゾーンをハイライトすることで、分析をより迅速かつ実用的にします。
preview
共和分株式による統計的裁定取引(第5回):スクリーニング

共和分株式による統計的裁定取引(第5回):スクリーニング

本記事では、共和分関係にある株式を用いた統計的裁定(アービトラージ)取引戦略のための資産スクリーニングプロセスを提案しています。本システムは、資産のセクターや業界といった経済的要因による通常のフィルタリングから始まり、スコアリングシステムのための基準リストで終わります。スクリーニングに使用される各統計検定(ピアソン相関、エングル=グレンジャー共和分、ジョハンセン共和分、ADF/KPSSの定常性検定)について、それぞれPythonクラスが開発されました。これらのPythonクラスは提供されており、さらに著者によるAIアシスタントを用いたソフトウェア開発に関する個人的なコメントも付されています。
preview
サイクルベースの取引システム(DPO)の構築と最適化の方法

サイクルベースの取引システム(DPO)の構築と最適化の方法

本記事では、MQL5におけるDPO(Detrended Price Oscillator、トレンド除去価格オシレーター)を用いた取引システムの設計および最適化手法について解説します。DPOのコアロジックを明確にし、長期トレンドを排除して短期サイクルを抽出する仕組みを示します。さらに、段階的な例とシンプルな戦略を通じて、インジケーターの実装方法、エントリー/エグジット条件の定義、そしてバックテストの実施方法について学ぶことができます。最後に、パフォーマンスを向上させ、市場環境の変化へ適応させるための実践的な最適化手法を紹介します。
preview
プライスアクション分析ツールキットの開発(第41回):MQL5で統計的価格レベルEAを構築する

プライスアクション分析ツールキットの開発(第41回):MQL5で統計的価格レベルEAを構築する

統計は常に金融分析の中心にあります。統計とは、データを収集・分析・解釈・提示し、意味のある情報に変換する学問です。これをローソク足に応用すると、価格の生データを測定可能な洞察に圧縮できます。特定期間における市場の中心傾向、分布、広がりを把握できれば、どれほど有益でしょうか。本記事では、統計的手法を用いてローソク足データを明確で実行可能なシグナルに変換する方法を紹介します。
preview
MQL5におけるパイプライン

MQL5におけるパイプライン

本記事では、機械学習におけるデータ準備工程の中で、重要性が急速に高まっているデータ前処理パイプラインを取り上げます。前処理パイプラインとは、生データをモデルに入力する前に通す一連の変換ステップを整理し、効率化したものです。一見地味な作業ですが、前処理(特にスケーリング)は学習時間や実行コストを削減するだけでなく、モデルの汎化性能を大きく左右します。本記事ではscikit-learnの前処理関数を中心に扱います。MQL5ウィザードはここでは使用しませんが、後続の記事で取り上げる予定です。
preview
プライスアクション分析ツールキットの開発(第40回):Market DNA Passport

プライスアクション分析ツールキットの開発(第40回):Market DNA Passport

本記事では、各通貨ペアが持つ固有のアイデンティティを、その過去のプライスアクションという視点から探ります。生物の設計図を記述するDNAの概念に着想を得て、本記事では市場にも同様の枠組みを適用し、プライスアクションを各通貨ペアのDNAとして扱います。ボラティリティ、スイング、リトレースメント、スパイク、セッション特性といった構造的挙動を分解することで、各ペアを他と区別する基礎的なプロファイルが浮かび上がります。このアプローチにより、市場行動に対するより深い洞察が得られ、トレーダーは各銘柄の特性に合った戦略を体系的に組み立てられるようになります。
preview
FVGをマスターする:ブレーカーと市場構造の変化によるフォーメーション、ロジック、自動取引

FVGをマスターする:ブレーカーと市場構造の変化によるフォーメーション、ロジック、自動取引

これは、FVG(Fair Value Gaps、フェアバリューギャップ)の発生の形成ロジックや、ブレーカーおよびMSS(Market Structure Shifts、市場構造の変化)を用いた自動取引について解説することを目的として執筆した記事です。
preview
MQL5における単変量時系列への動的モード分解の適用

MQL5における単変量時系列への動的モード分解の適用

動的モード分解(DMD: Dynamic Mode Decomposition)は、主に高次元データセットに対して用いられる手法です。本稿では、DMDを単変量の時系列に適用し、その特性把握や予測に活用できることを示します。その過程で、MQL5に搭載されているDMDの実装、とりわけ新しい行列メソッドであるDynamicModeDecomposition()について詳しく解説します。
preview
共和分株式による統計的裁定取引(第4回):リアルタイムモデル更新

共和分株式による統計的裁定取引(第4回):リアルタイムモデル更新

本記事では、共和分関係にある株式バスケットを対象とした、シンプルでありながら包括的な統計的アービトラージのパイプラインについて解説します。データのダウンロードと保存を行うPythonスクリプト、相関検定、共和分検定、定常性検定、さらにデータベース更新用のMetatrader 5サービスの実装およびそれに対応するエキスパートアドバイザー(EA)も含まれています。また、いくつかの設計上の判断については、参考情報および実験の再現性向上のために本記事に記録しています。
preview
プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する

プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する

本記事では、フラクタルピボットを実用的な市場構造シグナルへ変換する、コンパクトなMQL5システム「Fractal Reaction System」を紹介します。リペイントを回避するために確定バーのロジックを用い、EAはChoCH (Change-of-Character)警告を検出し、BOS (Break-of-Structure)を確定させ、永続的なチャートオブジェクトを描画し、すべての確定イベントをログ出力してアラート(デスクトップ、モバイル、サウンド)します。アルゴリズム設計、実装上の注意点、テスト結果、そしてEAコード全文を順に解説し、読者ご自身でコンパイル、テスト、展開できるようにします。
preview
プライスアクション分析ツールキットの開発(第38回):ティックバッファVWAPと短期不均衡エンジン

プライスアクション分析ツールキットの開発(第38回):ティックバッファVWAPと短期不均衡エンジン

第38回では、生のティックを実用的なシグナルに変換する、実稼働グレードのMT5監視パネルを構築します。EAはティックデータをバッファリングし、ティックレベルのVWAP、短期ウィンドウの不均衡(フロー)指標、ATRに基づくポジションサイズを計算します。その後、スプレッド、ATR、フローを低フリッカーのバーで可視化します。システムは推奨ロットサイズと1Rストップを計算し、狭いスプレッド、強いフロー、エッジ条件に対して設定可能なアラートを発行します。自動取引は意図的に無効化しており、堅牢なシグナル生成とクリーンなユーザー体験に重点を置いています。
preview
MetaTraderとGoogleシートがPythonAnywhereで融合:安全なデータフローのガイド

MetaTraderとGoogleシートがPythonAnywhereで融合:安全なデータフローのガイド

本記事では、MetaTraderのデータをGoogleスプレッドシートに安全にエクスポートする方法を紹介します。Googleスプレッドシートはクラウドベースで、保存されたデータにいつでもどこからでもアクセスできるため、非常に有用なソリューションです。トレーダーはGoogleスプレッドシートにエクスポートされた取引データや関連情報にいつでもアクセスでき、将来の取引に向けた分析を自由におこなうことができます。