
集団型ADAM(適応モーメント推定法)
この記事では、よく知られていて人気のあるADAM勾配最適化手法を集団アルゴリズムに変換し、さらにハイブリッド個体を導入して修正した方法を紹介しています。この新しいアプローチでは、確率分布を使って成功した判断の要素を組み合わせたエージェントを作ることができます。大きな革新点は、有望な解からの情報を適応的に蓄積するハイブリッド集団個体を形成することであり、それによって複雑な多次元空間での探索効率が高まります。

汎用MLP近似器に基づくエキスパートアドバイザー
この記事では、機械学習の深い知識がなくても利用できる、取引EAでのニューラルネットワークの簡単でアクセスしやすい使用方法を紹介しています。この方法では、目的関数の正規化を省略できるほか、「重みの爆発」や「収束停止」といった問題を解消し、直感的な学習と結果の視覚的な管理を可能にしています。

外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合
FXにおけるポートフォリオ取引はどのように機能するのでしょうか。マーコウィッツのポートフォリオ理論による資産配分最適化と、VaRモデルによるリスク最適化はどのように統合できるのでしょうか。ポートフォリオ理論に基づいたコードを作成し、一方では低リスクを確保し、もう一方では受け入れ可能な長期的収益性を得ることを試みます。

3D反転パターンに基づくアルゴリズム取引
3Dバーによる自動売買の新しい世界を発見します。多次元の価格バー上で自動売買ロボットはどのように見えるのでしょうか。3Dバーの「黄色のクラスタ」はトレンドの反転を予測できるのでしょうか。多次元取引はどのように見えるのでしょうか。

時間、価格、ボリュームに基づいた3Dバーの作成
この記事では、多変量3D価格チャートとその作成方法について詳しく説明します。また、3Dバーが価格反転をどのように予測するか、PythonとMetaTrader 5を使ってリアルタイムでこれらのボリュームバーをプロットする方法についても考察します。

リプレイシステムの開発(第76回):新しいChart Trade(III)
この記事では、前回の記事で省略されていたDispatchMessageのコードがどのように動作するのかを見ていきます。さらに、次回の記事のテーマについても紹介します。そのため、次のトピックに進む前に、このコードの仕組みを理解しておくことが重要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

株式市場における非線形回帰モデル
株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。

外国為替データ分析における連関規則の使用
スーパーマーケットの小売分析で使われる予測ルールを、実際のFX市場に応用する方法は?クッキー、牛乳、パンの購買傾向と株式市場の取引が関係する方法は?この記事では、連関規則を活用した革新的なアルゴリズム取引手法について解説します。

リプレイシステムの開発(第75回):新しいChart Trade(II)
この記事では、C_ChartFloatingRADクラスについて説明します。これはChart Tradeを機能させるための要となる部分です。ただし、解説はこれで終わりではありません。本記事の内容はかなり広範かつ深い理解を必要とするため、続きは次回の記事で補完します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

リプレイシステムの開発(第74回):新しいChart Trade(I)
この記事では、Chart Tradeに関する本連載の最後に示したコードを修正します。これらの変更は、現在のリプレイ/シミュレーションシステムのモデルにコードを適合させるために必要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析
この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。

原子軌道探索(AOS)アルゴリズム
この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。

レーベンバーグ・マルカートアルゴリズムを用いた多層パーセプトロンのトレーニング
この記事では、順伝播型(フィードフォワード)ニューラルネットワークの学習におけるレーベンバーグ・マルカートアルゴリズムの実装を紹介します。また、scikit-learn Pythonライブラリのアルゴリズムと性能比較もおこなっています。まずは、勾配降下法、モーメンタム付き勾配降下法、確率的勾配降下法などのより単純な学習法について簡単に触れます。

Pythonによる農業国通貨への天候影響分析
天候と外国為替にはどのような関係があるのでしょうか。古典的な経済理論は、天候のような要因が市場の動きに与える影響を長い間無視してきました。しかし、すべてが変わりました。天候条件と農業通貨の市場でのポジションとの間に、どのようなつながりがあるのかを探ってみましょう。

リプレイシステムの開発(第73回):異例のコミュニケーション(II)
この記事では、インジケーターとサービス間でリアルタイムに情報を伝達する方法について解説し、また時間軸を変更した際に発生しうる問題の原因とその解決方法について理解を深めます。おまけとして、最新バージョンのリプレイ/シミュレーションアプリへのアクセスも提供します。

リプレイシステムの開発(第72回):異例のコミュニケーション(I)
私たちが本日作成する内容は、理解が難しいものになるでしょう。したがって本稿では、初期段階についてのみ説明します。この段階は次のステップに進むための重要な前提条件となるため、ぜひ注意深く読んでください。この資料の目的はあくまで学習にあります。提示された概念を実際に応用するのではなく、あくまで理解・習得することが目的です。

ALGLIBライブラリの最適化手法(第2回):
この記事では、ALGLIBライブラリにおける残りの最適化手法の検討を続けていきます。特に、複雑な多次元関数でのテストに重点を置きます。これにより、各アルゴリズムの効率性を評価できるだけでなく、さまざまな条件下における強みと弱みを明らかにすることができます。

ALGLIBライブラリの最適化手法(第1回):
この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。

リプレイシステムの開発(第71回):正しい時間を知る(IV)
この記事では、前回の記事で紹介したリプレイ/シミュレーションサービスに関連する実装方法について見ていきます。人生の多くのことと同様に、問題は必ず発生するものです。そして今回も例外ではありませんでした。本記事では、引き続き改善をおこなっていきます。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

リプレイシステムの開発(第70回):正しい時間を知る(III)
この記事では、CustomBookAdd関数を適切かつ効果的に使う方法について見ていきます。一見シンプルに見えるこの関数ですが、実際には多くの細かな注意点があります。たとえば、マウスインジケーターに対してカスタム銘柄がオークション中なのか、取引中なのか、市場が閉まっているのかを伝えることができます。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

プライスアクション分析ツールキットの開発(第21回):Market Structure Flip Detector Tool
The Market Structure Flip Detectorエキスパートアドバイザー(EA)は、市場センチメントの変化を常に監視する頼れるパートナーとして機能します。ATR (Average True Range)に基づく閾値を活用することで、構造の反転を的確に検出し、各高値切り下げおよび安値切り上げを明確なインジケーターで表示します。MQL5の高速な実行性能と柔軟なAPIにより、このツールはリアルタイム分析を可能にし、最適な視認性を保つよう表示を調整しながら、反転の回数やタイミングをモニターできるライブダッシュボードも提供します。さらに、カスタマイズ可能なサウンド通知やプッシュ通知により、重要なシグナルを確実に受け取ることができ、シンプルな入力と補助ルーチンがどのように価格変動を実用的な戦略へと変換するかを実感できます。

データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする
ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。

データサイエンスとML(第36回):偏った金融市場への対処
金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。

MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス
本日は、MQL5の機能を活用して、BMP形式の画像などの外部リソースを利用し、トレーディング管理パネル用に独自のスタイルを持ったホームインターフェイスを作成します。ここで紹介する手法は、画像やサウンドなど複数のリソースを一括でパッケージ化して配布する際に特に有効です。このディスカッションでは、こうした機能をどのように実装し、New_Admin_Panel EAにおいてモダンで視覚的に魅力的なインターフェイスを提供するかを一緒に見ていきましょう。

プライスアクション分析ツールキットの開発(第20回):External Flow (IV) — Correlation Pathfinder
Correlation Pathfinderは、「プライスアクション分析ツールキット開発」連載の一環として、通貨ペアの動的な関係を理解するための新しいアプローチを提供します。このツールはデータの収集と分析を自動化し、EUR/USDやGBP/USDなどのペアがどのように連動して動いているかを可視化します。リスク管理を強化し、より効果的にチャンスを捉えるための実用的かつリアルタイムな情報で、取引戦略のレベルを引き上げましょう。

オープニングレンジブレイクアウト日中取引戦略の解読
オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。

ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する
本記事では、ポートフォリオレベルの統計的アービトラージの基本的な概念を紹介します。数学の深い知識がない読者にも理解しやすく説明し、実際の運用を始めるためのコンセプトフレームワークを提案することを目的としています。記事には、動作するエキスパートアドバイザー(EA)と、1年間のバックテストに関する注記、再現用の設定ファイル(.iniファイル)も含まれています。

デイトレードLarry Connors RSI2平均回帰戦略
Larry Connorsは著名なトレーダー兼著者であり、特に2期間RSI (RSI2)などのクオンツトレーディングや戦略で知られています。RSI2は短期的な買われすぎ・売られすぎの市場状況を識別するのに役立ちます。本記事では、まず私たちの研究の動機を説明し、その後Connorsの代表的な3つの戦略をMQL5で再現し、S&P 500指数CFDのデイトレードに適用していきます。

データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法
NumPyライブラリは、Pythonプログラミング言語においてほぼすべての機械学習アルゴリズムの中核を支えています。本記事では、高度なモデルやアルゴリズムの構築を支援するために、複雑なコードをまとめたモジュールを実装していきます。

プライスアクション分析ツールキットの開発(第18回):クォーターズ理論の紹介(III) - Quarters Board
この記事では、元のQuarters Scriptを改良し、「Quarters Board」というツールを導入しています。これにより、コードを編集し直すことなく、チャート上でクォーターレベルを直接オン・オフできるようになります。特定のレベルを簡単に有効化・無効化できるほか、エキスパートアドバイザー(EA)はトレンド方向に関するコメントも提供し、市場の動きをより理解しやすくします。

最適化におけるカスタム基準への新しいアプローチ(第1回):活性化関数の例
これは、カスタム基準に関する数学的考察をおこなう連載記事の第1回目です。特に、ニューラルネットワークで使用される非線形関数、実装用のMQL5コード、さらにターゲットオフセットや補正オフセットの活用に焦点を当てています。

受信者動作特性曲線の紹介
ROC曲線は、分類器の性能を評価するために使用されるグラフ表現です。ROC曲線は比較的単純に見えますが、実際に使用する際には、よくある誤解や陥りやすい落とし穴があります。この記事の目的は、分類器の性能評価を理解しようとする実務者に向けて、ROC曲線を紹介することです。

MQL5で取引管理者パネルを作成する(第9回):コード編成(III)コミュニケーションモジュール
MQL5インターフェイス設計における最新の進展を、再設計されたコミュニケーションパネルの公開とともに詳しく解説します。また、モジュール化の原則に基づいて新しい管理パネルを構築するシリーズも引き続き展開していきます。この記事では、CommunicationsDialogクラスを段階的に開発し、それをDialogクラスから継承する方法を丁寧に解説します。さらに、開発には配列およびListViewクラスを活用します。MQL5開発スキルを高めるための実用的な知見を得るために、ぜひ記事を読み、コメント欄でディスカッションにご参加ください。

データサイエンスとML(第34回):時系列分解、株式市場を核心にまで分解
ノイズが多く、予測が難しいデータで溢れる世界では、意味のあるパターンを特定するのは困難です。この記事では、データをトレンド、季節パターン、ノイズといった主要な要素に分解する強力な分析手法「季節分解」について解説します。こうしてデータを分解することで、隠れた洞察を見つけ、より明確で解釈しやすい情報を得ることが可能になります。

MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法
MetaTrader 5口座の取引履歴を処理するために、MQL5ソースコード内で「History Manager EX5」ライブラリを簡単にインポートして活用する方法を、本連載の最終回となるこの記事で解説します。MQL5ではシンプルな1行の関数呼び出しで、取引データの管理や分析を効率的におこなうことが可能です。さらに、取引履歴の分析スクリプトを複数作成する方法や、実用的なユースケースとして、価格ベースのエキスパートアドバイザー(EA)の開発方法についても学んでいきます。このEAは、価格データとHistory Manager EX5ライブラリを活用し、過去のクローズ済み取引に基づいて取引判断をおこない、取引量の調整やリカバリーストラテジーの実装をおこないます。

プライスアクション分析ツールキットの開発(第17回):TrendLoom EAツール
プライスアクションを観察し、取引をおこなう立場から言うと、複数の時間枠でトレンドが確認された場合、その方向にトレンドが継続することがよくあります。ただし、トレンドがどれくらい続くかは一定ではなく、ポジションを長期で保有するのか、それともスキャルピングのような短期取引をおこなうのかといったトレーダーのスタイルによって異なります。トレンド確認に使用する時間枠の選択は非常に重要な役割を果たします。以下の記事では、ワンクリックや定期的な更新によって、複数の時間足にわたる全体的なトレンドを自動で分析できる便利なシステムを紹介しています。ぜひご覧ください。

プライスアクション分析ツールキットの開発(第16回):クォーターズ理論の紹介(II) - Intrusion Detector EA
前回の記事では、「Quarters Drawer」というシンプルなスクリプトを紹介しました。このツールを基盤として、今回はさらに一歩進め、これらのクォーターを監視し、市場がどのように反応するかを見極めるためのモニター型エキスパートアドバイザー(EA)を作成します。本記事では、ゾーン検出ツールの開発プロセスについて紹介します。

知っておくべきMQL5ウィザードのテクニック(第56回):ビル・ウィリアムズフラクタル
ビル・ウィリアムズによるフラクタルは、最初にチャート上で目にしたときには見落とされがちな強力なインジケーターです。一見するとチャートが煩雑に見え、鋭さに欠けるように思えるかもしれません。この記事では、このインジケーターの覆いを取り払い、そのさまざまなパターンがどのように機能するのかを、MQL5ウィザードで組み上げたエキスパートアドバイザー(EA)によるフォワードウォークテストを通じて検証していきます。

外国為替平均回帰戦略のためのカルマンフィルター
カルマンフィルターは、価格変動のノイズを除去して金融時系列の真の状態を推定するために、アルゴリズム取引で用いられる再帰的なアルゴリズムです。新しい市場データに基づいて予測を動的に更新するため、平均回帰のような適応型戦略において非常に有用です。本記事ではまず、カルマンフィルターの計算方法と実装について紹介します。次に、このフィルターをクラシックな平均回帰型の外国為替(FX)戦略に適用する例を示します。最後に、異なる通貨ペアにおいてカルマンフィルターと移動平均を比較し、さまざまな統計分析をおこないます。