Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)
Trata-se de uma nova metaheurística de otimização bioinspirada e autoral, denominada NOA (Neuroboids Optimization Algorithm), que combina princípios de inteligência coletiva e redes neurais. Ao contrário dos métodos clássicos, o algoritmo utiliza uma população de "neuroboides" autoaprendizes, cada um com sua própria rede neural, que adapta a estratégia de busca em tempo real. O artigo em questão apresenta a arquitetura do algoritmo, os mecanismos de autoaprendizado dos agentes e as perspectivas de aplicação dessa abordagem híbrida em tarefas complexas de otimização.
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)
O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.
Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini
Uma das abordagens para aumentar a eficiência no treinamento e na convergência de modelos é aprimorar os métodos de otimização. O Adam-mini é um método adaptativo projetado para aprimorar o algoritmo base Adam.
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática
Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.
Redes neurais em trading: Modelos com uso de transformação wavelet e atenção multitarefa
Apresentamos um framework que combina a transformação wavelet com um modelo multitarefa de Self-Attention, visando aumentar a responsividade e a precisão das previsões em cenários de mercado voláteis. A transformação wavelet permite decompor o retorno dos ativos em frequências altas e baixas, capturando com precisão as tendências de longo prazo do mercado e as flutuações de curto prazo.
Redes neurais em trading: Modelos de difusão direcionada (DDM)
Apresentamos os modelos de difusão direcionada, que utilizam ruídos anisotrópicos e direcionais, dependentes dos dados, no processo de propagação para frente, para capturar representações de grafos significativas.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)
Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
Redes neurais em trading: Segmentação guiada
Vamos conhecer um método de análise multimodal integrada para interagir e compreender características.
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)
Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller
Este artigo apresenta uma imersão fascinante no mundo do comportamento social de organismos vivos e sua influência na criação de um novo modelo matemático — ASBO (Adaptive Social Behavior Optimization). Exploramos como os princípios de liderança, vizinhança e cooperação, observados em sociedades de seres vivos, inspiram o desenvolvimento de algoritmos de otimização inovadores.
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria
Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.
Previsão de barras Renko com a ajuda de IA CatBoost
Como usar barras Renko junto com IA? Vamos analisar o Renko-trading no Forex com precisão de previsões de até 59.27%. Exploraremos as vantagens das barras Renko para filtrar o ruído do mercado, entenderemos por que indicadores de volume são mais importantes do que padrões de preço e como configurar o tamanho ideal do bloco Renko para EURUSD. Um guia passo a passo para integrar CatBoost, Python e MetaTrader 5 para criar seu próprio sistema de previsão Renko Forex. Perfeito para traders que desejam ir além da análise técnica tradicional.
Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)
Apresento a vocês meu novo algoritmo populacional de otimização BIO (Blood Inheritance Optimization), inspirado no sistema de herança dos tipos sanguíneos humanos. Neste algoritmo, cada solução possui seu próprio "tipo sanguíneo", que define a forma de sua evolução. Assim como na natureza, o tipo sanguíneo de uma criança é herdado segundo regras específicas, no BIO as novas soluções recebem suas características através de um sistema de herança e mutações.
Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)
Damos continuidade à implementação dos algoritmos do agente multimodal para negociação financeira, o FinAgent, desenvolvido para análise de dados multimodais da dinâmica de mercado e de padrões históricos de trading.
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)
Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)
Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.
Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)
O Algoritmo do Restaurateur de Sucesso (SRA) é um método inovador de otimização inspirado nos princípios de gestão de um restaurante. Ao contrário das abordagens tradicionais, o SRA não descarta as soluções mais fracas, mas as melhora, combinando-as com elementos das soluções de maior sucesso. O algoritmo apresenta resultados competitivos e traz uma nova perspectiva sobre como equilibrar a diversificação e a intensificação em problemas de otimização.
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples
Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
Redes neurais em trading: Segmentação de dados com base em expressões de referência
Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
Redes neurais em trading: Modelos de espaço de estados
A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.
Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT
Seguimos com as tentativas de decifrar os movimentos dos preços... Que tal uma análise linguística do "vocabulário do mercado", que obtemos ao converter o código binário do preço para BIP39? Neste artigo, vamos nos aprofundar em uma abordagem inovadora para a análise de dados de mercado e explorar como os métodos modernos de processamento de linguagem natural podem ser aplicados ao idioma do mercado.
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)
O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 45): Aprendizado por Reforço com Monte-Carlo
Monte-Carlo é o quarto algoritmo diferente em aprendizado por reforço que estamos considerando com o objetivo de explorar sua implementação em Expert Advisors montados pelo wizard. Embora ancorado em amostragem aleatória, ele apresenta vastas formas de simulação que podemos explorar.
Análise da influência do clima nas moedas de países agrícolas usando Python
Como o clima está relacionado ao mercado cambial? Na teoria econômica clássica, por muito tempo não se reconheceu a influência de fatores como o clima no comportamento do mercado. Porém, tudo mudou. Vamos tentar estabelecer conexões entre o estado do tempo e a situação das moedas agrícolas no mercado.
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)
Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.
Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)
A aplicação de processos de difusão anisotrópicos para codificação dos dados brutos no espaço latente hiperbólico, conforme proposto no framework HypDiff, contribui para a preservação das características topológicas da situação atual do mercado e melhora a qualidade de sua análise. No artigo anterior, iniciamos a implementação das abordagens propostas usando MQL5. Hoje, continuaremos esse trabalho iniciado, levando-o até sua conclusão lógica.
Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)
Neste artigo, vamos analisar um novo algoritmo populacional de otimização, o CPA (Cyclic Parthenogenesis Algorithm), inspirado na estratégia reprodutiva única dos pulgões. O algoritmo combina dois mecanismos de reprodução — partenogênese e sexual — e utiliza uma estrutura de colônia populacional com possibilidade de migração entre colônias. As principais características do algoritmo são a alternância adaptativa entre diferentes estratégias reprodutivas e o sistema de troca de informação entre colônias por meio do mecanismo de voo.
Aplicando Seleção de Recursos Localizada em Python e MQL5
Este artigo explora um algoritmo de seleção de recursos introduzido no artigo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. O algoritmo é implementado em Python para construir modelos de classificação binária que podem ser integrados com aplicativos MetaTrader 5 para inferência.
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit
Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.
Definição de sobrecompra e sobrevenda segundo a teoria do caos
Determinamos as zonas de sobrecompra e sobrevenda do mercado a partir da teoria do caos: uma integração dos princípios da teoria do caos, da geometria fractal e das redes neurais para prever os mercados financeiros. O estudo demonstra o uso do expoente de Lyapunov como medida da natureza caótica do mercado e a adaptação dinâmica dos sinais de trade. A metodologia inclui um algoritmo de geração de ruído fractal, ativação tangencial hiperbólica e otimização com momento.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA
O SARSA (State-Action-Reward-State-Action, estado–ação–recompensa–estado–ação) é outro algoritmo que pode ser utilizado na implementação de aprendizado por reforço. Vamos analisar como esse algoritmo pode ser implementado como um modelo independente (e não apenas como um mecanismo de aprendizado) em Expert Advisors gerados no Wizard, de forma semelhante ao que fizemos nos casos de Q-learning e DQN.
Algoritmo de busca circular — Circle Search Algorithm (CSA)
Este artigo apresenta um novo algoritmo metaheurístico de otimização, o CSA (Circle Search Algorithm), baseado nas propriedades geométricas do círculo. O algoritmo utiliza o princípio de movimentação de pontos ao longo das tangentes para encontrar a solução ideal, combinando fases de diversificação global e intensificação local.
Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)
Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)
Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda
A função de perda (Loss Function) é uma métrica fundamental nos algoritmos de aprendizado de máquina, que fornece feedback para o processo de aprendizado ao quantificar o quão bem um determinado conjunto de parâmetros se comporta em comparação com o valor-alvo esperado. Vamos explorar os diferentes formatos dessa função na classe personalizada do Assistente MQL5.
Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco
O artigo contém uma descrição detalhada do algoritmo de cálculo de taxas cruzadas, a visualização da matriz de desequilíbrios e recomendações para a configuração ideal dos parâmetros MinDiscrepancy e MaxRisk para uma negociação eficiente. O sistema calcula automaticamente o "valor justo" de cada par de moedas por meio de taxas cruzadas, gerando sinais de compra em desvios negativos e de venda em desvios positivos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização
A regularização é uma forma de penalizar a função de perda em proporção ao peso discreto aplicado ao longo das várias camadas de uma rede neural. Vamos observar a importância de algumas formas de regularização e o impacto que isso pode ter em testes realizados com um Expert Advisor montado por um assistente.
Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD
Na discussão de hoje, utilizamos dados alternativos diários do Federal Reserve de St. Louis sobre o Índice Amplo do Dólar dos EUA e um conjunto de outros indicadores macroeconômicos para prever a taxa de câmbio futura do EURUSD. Infelizmente, embora os dados aparentem ter uma correlação quase perfeita, não conseguimos obter ganhos materiais em nossa acurácia de modelo, o que pode nos indicar que os investidores talvez estejam melhores usando apenas as cotações normais do mercado.
Algoritmo de Otimização de Força Central (Central Force Optimization, CFO)
Este artigo apresenta o algoritmo de otimização de força central (CFO), inspirado nas leis da gravitação. É explorado como os princípios da atração física podem resolver problemas de otimização, onde soluções mais pesadas atraem seus análogos menos bem-sucedidos.