
Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva
Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.

Redes neurais em trading: Otimizando Transformer para previsão de séries temporais (LSEAttention)
O framework LSEAttention propõe caminhos para aprimorar a arquitetura Transformer, tendo sido desenvolvido especificamente para a previsão de séries temporais multivariadas de longo prazo. As abordagens sugeridas pelos autores do método permitem resolver problemas comuns no Transformer tradicional, como o colapso entrópico e a instabilidade no treinamento.

Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)
Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.

Rede neural na prática: A prática leva a perfeição
Neste artigo mostrarei como, uma simples mudança no código, a fim de tornar o neurônio um pouco mais especializado. Pode tornar a fase de treinamento consideravelmente mais rápida. Visto que uma vez que o neurônio, ou rede neural, como será visto mais para frente. Já estiver sido treinada. O trabalho executado por ela, será feito de maneira muito mais rápida. Também falarei de um problema que existe, do qual poucos mencionam.

Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)
Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.

Construindo Expert Advisors Auto-otimizantes Com MQL5 E Python (Parte II): Ajustando Redes Neurais Profundas
Modelos de aprendizado de máquina vêm com vários parâmetros ajustáveis. Nesta série de artigos, exploraremos como personalizar seus modelos de IA para se ajustar ao seu mercado específico utilizando a biblioteca SciPy.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert
Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.

Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX
Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais, que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A anotação de dados direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, aumentar a precisão do modelo e até ajudar o modelo a alcançar um salto qualitativo!

Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)
Neste artigo, propomos explorar um algoritmo que utiliza operadores de melhoria de política de forma fechada para otimizar as ações do Agente em um ambiente off-line.

Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)
Continuaremos a explorar o método Transformer Vetorial Hierárquico. Neste artigo, concluiremos a construção do modelo, realizando seu treinamento e teste em dados históricos reais.

Redes neurais em trading: Modelo adaptativo multiagente (Conclusão)
No artigo anterior, conhecemos o framework adaptativo multiagente MASA, que combina abordagens de aprendizado por reforço com estratégias adaptativas, garantindo um equilíbrio harmônico entre lucratividade e riscos em condições turbulentas de mercado. Implementamos o funcional de agentes individuais deste framework, e neste artigo continuaremos o trabalho iniciado, levando-o à sua conclusão lógica.

Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)
No aprendizado off-line, utilizamos um conjunto de dados fixo, e isso não abrange toda a variedade do ambiente. Durante o processo de treinamento, nosso Agente pode gerar ações fora desse conjunto. Sem feedback do ambiente, a precisão dessas ações é duvidosa. Manter a política do Agente dentro do conjunto de treinamento se torna importante para confiar nos resultados. Vamos falar mais sobre isso aqui neste artigo.

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas
As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.

O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5
Neste artigo, descrevemos a implementação do Algoritmo Iterativo Multicamadas do Método de Agrupamento para Manipulação de Dados em MQL5.

Classe base de algoritmos populacionais como alicerce para otimização eficiente
Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios
Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.

As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)
Neste artigo, examinamos a evolução do algoritmo ACS: três modificações visando melhorar as características de convergência e eficácia do algoritmo. A transformação de um dos principais algoritmos de otimização. Das modificações de matrizes a abordagens revolucionárias para a formação de populações.

Colmeia artificial de abelhas (ABHA): Testes e resultados
Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.

Métodos de otimização da biblioteca ALGLIB (Parte I)
Neste artigo, vamos conhecer os métodos de otimização da biblioteca ALGLIB para MQL5. O artigo inclui exemplos simples e visuais de aplicação da ALGLIB para resolver tarefas de otimização, o que tornará o processo de aprendizado dos métodos o mais acessível possível. Analisaremos detalhadamente a integração de algoritmos como BLEIC, L-BFGS e NS, e com base neles resolveremos uma tarefa de teste simples.

Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias
Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.

Treinamento de perceptron multicamadas com o algoritmo de Levenberg-Marquardt
Este artigo apresenta a implementação do algoritmo de Levenberg-Marquardt para o treinamento de redes neurais com propagação para frente. Foi feita uma análise comparativa de desempenho com os algoritmos da biblioteca scikit-learn do Python. Primeiramente, são discutidos métodos de treinamento mais simples, como a descida do gradiente, a descida do gradiente com momentum e a descida do gradiente estocástica.

Redes neurais em trading: Análise de nuvem de pontos (PointNet)
A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.

Redes neurais em trading: Modelo de dupla atenção para previsão de tendências
Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.

Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído
A qualidade da previsão de estados futuros desempenha um papel importante no método Goal-Conditioned Predictive Coding, com o qual nos familiarizamos no artigo anterior. Neste artigo, quero apresentar a vocês um algoritmo capaz de aumentar significativamente a qualidade da previsão em ambientes estocásticos, que incluem os mercados financeiros.

Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos
Nesta série de artigos, revisitamos estratégias clássicas para ver se podemos melhorá-las usando IA. No artigo de hoje, vamos examinar a popular estratégia de análise de múltiplos tempos gráficos para avaliar se a estratégia seria aprimorada com IA.

Otimização com búfalos-africanos — African Buffalo Optimization (ABO)
O artigo é dedicado ao algoritmo de otimização com búfalos-africanos (ABO), uma abordagem meta-heurística desenvolvida em 2015 com base no comportamento único desses animais. Ele descreve detalhadamente as etapas de implementação do algoritmo e sua eficácia na busca por soluções de problemas complexos, tornando-o uma ferramenta valiosa na área de otimização.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado
A Taxa de Aprendizado é um tamanho de passo em direção a um objetivo de treinamento nos processos de treinamento de muitos algoritmos de aprendizado de máquina. Examinamos o impacto que seus diversos cronogramas e formatos podem ter no desempenho de uma Rede Generativa Adversária, um tipo de rede neural que já havíamos analisado em um artigo anterior.

Redes neurais em trading: Transformer para nuvens de pontos (Pointformer)
Neste artigo, falaremos sobre os algoritmos que utilizam métodos de atenção para resolver tarefas de detecção de objetos em nuvens de pontos. A detecção de objetos em nuvens de pontos é de grande importância para diversas aplicações práticas.

Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)
Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.

Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (Conclusão)
No artigo anterior, exploramos o framework adaptativo multiagente MASAAT, que utiliza um conjunto de agentes para realizar análise cruzada de séries temporais multimodais em diferentes escalas de representação dos dados. Hoje, concluiremos o trabalho iniciado anteriormente, implementando as abordagens desse framework utilizando MQL5.

Integração do MQL5 com pacotes de processamento de dados (Parte 1): Análise avançada de dados e processamento estatístico
A integração permite um fluxo de trabalho contínuo, no qual os dados financeiros brutos do MQL5 podem ser importados para pacotes de processamento de dados, como o Jupyter Lab, possibilitando análises avançadas, incluindo testes estatísticos.

Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)
Continuação do artigo anterior como desenvolvimento da ideia de grupos sociais. No novo artigo, explora-se a evolução dos grupos sociais utilizando algoritmos de movimentação e memória. Os resultados ajudarão a entender a evolução dos sistemas sociais e aplicá-los na otimização e busca de soluções.

O Método de Agrupamento de Manipulação de Dados: Implementando o Algoritmo Combinatório em MQL5
Neste artigo, continuamos nossa exploração da família de algoritmos do Método de Agrupamento de Manipulação de Dados, com a implementação do Algoritmo Combinatório, juntamente com sua versão refinada, o Algoritmo Combinatório Seletivo em MQL5.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs
As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.

Redes neurais em trading: Injeção de informação global em canais independentes (InjectTST)
A maioria dos métodos modernos de previsão de séries temporais multimodais utiliza a abordagem de canais independentes, ignorando a dependência natural entre os diferentes canais de uma série temporal. Para melhorar a eficiência dos modelos, é fundamental utilizar equilibradamente duas abordagens: canais independentes e mistos.

Redes neurais em trading: Detecção de objetos com reconhecimento de cena (HyperDet3D)
Apresentamos uma nova abordagem para a detecção de objetos por meio de hiper-redes. Uma hiper-rede de geração de pesos para o modelo subjacente, que nos permite levar em conta as peculiaridades do estado atual do mercado. Essa abordagem melhora a precisão da previsão, adaptando o modelo a diferentes condições de mercado.

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 10): RBM não convencional
As máquinas de Boltzmann restritas (Restrictive Boltzmann Machines, RBM) são, em um nível básico, uma rede neural de duas camadas capaz de realizar classificação não supervisionada através da redução de dimensionalidade. Vamos usar seus princípios básicos e ver o que acontece se a desenharmos e a treinarmos de forma não convencional. Será que conseguiremos obter um filtro de sinais útil?

Redes neurais em trading: Abordagem sem máscara para previsão do movimento de preços
Neste artigo, apresentamos o método Mask-Attention-Free Transformer (MAFT) e sua aplicação na área de trading. Ao contrário dos Transformers tradicionais, que exigem mascaramento de dados ao processar sequências, o MAFT otimiza o processo de atenção, eliminando a necessidade de mascaramento, o que melhora significativamente a eficiência computacional.

Redes neurais em trading: Análise da situação do mercado usando o transformador de padrões
Ao analisarmos a situação do mercado com nossos modelos, o elemento-chave é a vela. No entanto, sabe-se há muito tempo que os padrões de velas podem ajudar a prever movimentos futuros de preço. Neste artigo, apresentaremos um método que permite integrar essas duas abordagens.

Métodos de otimização da biblioteca Alglib (Parte II)
Neste artigo, continuaremos a análise dos métodos de otimização restantes da biblioteca ALGLIB, com foco especial em seus testes em funções complexas e multidimensionais. Isso nos permitirá não apenas avaliar a eficiência de cada algoritmo, mas também identificar seus pontos fortes e fracos em diferentes condições.