Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Técnicas do MQL5 Wizard que você precisa conhecer (Parte 36): Q-Learning com Cadeias de Markov

Técnicas do MQL5 Wizard que você precisa conhecer (Parte 36): Q-Learning com Cadeias de Markov

Aprendizado por Reforço é um dos três pilares principais do aprendizado de máquina, ao lado do aprendizado supervisionado e do aprendizado não supervisionado. Portanto, ele está relacionado ao controle ótimo, ou seja, aprender a melhor política de longo prazo que melhor se adeque à função objetivo. É nesse contexto que exploramos seu possível papel no processo de aprendizado de uma MLP (rede neural de múltiplas camadas) de um Expert Advisor montado pelo assistente do MQL5 Wizard.
preview
Redes neurais em trading: Segmentação guiada (Conclusão)

Redes neurais em trading: Segmentação guiada (Conclusão)

Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
preview
Algoritmo de otimização de migração animal (AMO)

Algoritmo de otimização de migração animal (AMO)

O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.
preview
Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini

Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini

Uma das abordagens para aumentar a eficiência no treinamento e na convergência de modelos é aprimorar os métodos de otimização. O Adam-mini é um método adaptativo projetado para aprimorar o algoritmo base Adam.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas

Estamos concluindo a análise da sensibilidade da taxa de aprendizado ao desempenho do EA, estudando taxas de aprendizado adaptáveis Essas taxas devem ser ajustadas para cada parâmetro da camada durante o treinamento, por isso precisamos avaliar os potenciais benefícios em relação às perdas esperadas no desempenho.
preview
Redes neurais em trading: Modelo hiperbólico de difusão latente (HypDiff)

Redes neurais em trading: Modelo hiperbólico de difusão latente (HypDiff)

Esse artigo analisa formas de codificar dados brutos no espaço latente hiperbólico por meio de processos de difusão anisotrópicos. Isso ajuda a preservar com mais precisão as características topológicas da situação atual do mercado e melhora a qualidade de sua análise.
preview
Algoritmo de Irrigação Artificial — Artificial Showering Algorithm (ASHA)

Algoritmo de Irrigação Artificial — Artificial Showering Algorithm (ASHA)

Este artigo apresenta o Algoritmo de Irrigação Artificial (ASHA), um novo método metaheurístico desenvolvido para resolver problemas gerais de otimização. Baseado na simulação dos processos de fluxo e acúmulo de água, este algoritmo constrói o conceito de um campo ideal, no qual cada unidade de recurso (água) é convocada para buscar a solução ótima. Descubra como o ASHA adapta os princípios de fluxo e acúmulo para distribuir recursos de forma eficiente em um espaço de busca e conheça sua implementação e os resultados dos testes.
preview
Redes neurais em trading: Representação adaptativa de grafos (NAFS)

Redes neurais em trading: Representação adaptativa de grafos (NAFS)

Apresentamos o método NAFS (Node-Adaptive Feature Smoothing), uma abordagem não paramétrica para criar representações de nós que não requer o treinamento de parâmetros. O NAFS extrai as características de cada nó considerando seus vizinhos e, então, combina essas características de forma adaptativa para formar a representação final.
preview
Algoritmo de busca orbital atômica — Atomic Orbital Search (AOS): Modificação

Algoritmo de busca orbital atômica — Atomic Orbital Search (AOS): Modificação

Na segunda parte do artigo, continuaremos o desenvolvimento da versão modificada do algoritmo AOS (Atomic Orbital Search), focando em operadores específicos para aumentar sua eficiência e adaptabilidade. Após analisar as bases e mecânicas do algoritmo, discutiremos ideias para melhorar o desempenho e a capacidade de análise de espaços de soluções complexos, propondo novas abordagens para expandir sua funcionalidade como ferramenta de otimização.
preview
Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Compreender o comportamento de agentes é importante em diversas áreas, mas a maioria dos métodos se concentra em uma única tarefa (compreensão, remoção de ruído ou previsão), o que reduz sua eficácia em cenários reais. Neste artigo, apresento um modelo capaz de se adaptar à solução de diferentes tarefas.
preview
Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

No próximo artigo, conheceremos o algoritmo Anarchic Society Optimization (ASO) e discutiremos como um algoritmo baseado no comportamento irracional e aventureiro dos participantes de uma sociedade anárquica — um sistema anômalo de interação social, livre de autoridade centralizada e de qualquer tipo de hierarquia — é capaz de explorar o espaço de soluções e evitar armadilhas de ótimos locais. O artigo apresentará uma estrutura unificada do ASO, aplicável tanto a problemas contínuos quanto a problemas discretos.
preview
Análise da influência do clima nas moedas de países agrícolas usando Python

Análise da influência do clima nas moedas de países agrícolas usando Python

Como o clima está relacionado ao mercado cambial? Na teoria econômica clássica, por muito tempo não se reconheceu a influência de fatores como o clima no comportamento do mercado. Porém, tudo mudou. Vamos tentar estabelecer conexões entre o estado do tempo e a situação das moedas agrícolas no mercado.
preview
Algoritmo do Big Bang e do Grande Colapso — BBBC (Big Bang - Big Crunch)

Algoritmo do Big Bang e do Grande Colapso — BBBC (Big Bang - Big Crunch)

Este artigo apresenta o método Big Bang - Big Crunch, que possui duas fases principais: a criação cíclica de pontos aleatórios e sua compressão em direção à solução ótima. Essa abordagem combina diversificação e intensificação, permitindo encontrar gradualmente soluções melhores e abrindo novas possibilidades na área de otimização.
preview
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller

Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller

Este artigo apresenta uma imersão fascinante no mundo do comportamento social de organismos vivos e sua influência na criação de um novo modelo matemático — ASBO (Adaptive Social Behavior Optimization). Exploramos como os princípios de liderança, vizinhança e cooperação, observados em sociedades de seres vivos, inspiram o desenvolvimento de algoritmos de otimização inovadores.
preview
Redes neurais em trading: Segmentação guiada

Redes neurais em trading: Segmentação guiada

Vamos conhecer um método de análise multimodal integrada para interagir e compreender características.
preview
Redes neurais em trading: Modelos de espaço de estados

Redes neurais em trading: Modelos de espaço de estados

A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.
preview
Redes neurais em trading: Segmentação de dados com base em expressões de referência

Redes neurais em trading: Segmentação de dados com base em expressões de referência

Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
preview
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.
preview
Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)

Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)

A aplicação de processos de difusão anisotrópicos para codificação dos dados brutos no espaço latente hiperbólico, conforme proposto no framework HypDiff, contribui para a preservação das características topológicas da situação atual do mercado e melhora a qualidade de sua análise. No artigo anterior, iniciamos a implementação das abordagens propostas usando MQL5. Hoje, continuaremos esse trabalho iniciado, levando-o até sua conclusão lógica.
preview
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.
preview
Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)

Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)

Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.
preview
Métodos de William Gann (Parte III): A astrologia funciona?

Métodos de William Gann (Parte III): A astrologia funciona?

A posição dos planetas e estrelas influencia os mercados financeiros? Vamos recorrer à estatística e aos big data para embarcar em uma jornada fascinante pelo mundo onde as estrelas e os gráficos do mercado se cruzam.
preview
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.
preview
Redes neurais em trading: Modelos de difusão direcionada (DDM)

Redes neurais em trading: Modelos de difusão direcionada (DDM)

Apresentamos os modelos de difusão direcionada, que utilizam ruídos anisotrópicos e direcionais, dependentes dos dados, no processo de propagação para frente, para capturar representações de grafos significativas.
preview
Exemplo de Análise de Rede de Causalidade (CNA) e Modelo de Autorregressão Vetorial para Predição de Eventos de Mercado

Exemplo de Análise de Rede de Causalidade (CNA) e Modelo de Autorregressão Vetorial para Predição de Eventos de Mercado

Este artigo apresenta um guia abrangente para implementar um sistema de negociação sofisticado utilizando Análise de Rede de Causalidade (CNA) e Autorregressão Vetorial (VAR) em MQL5. Ele aborda o embasamento teórico desses métodos, fornece explicações detalhadas das funções-chave no algoritmo de negociação e inclui exemplos de código para implementação.
preview
Redes neurais em trading: Modelos com uso de transformação wavelet e atenção multitarefa

Redes neurais em trading: Modelos com uso de transformação wavelet e atenção multitarefa

Apresentamos um framework que combina a transformação wavelet com um modelo multitarefa de Self-Attention, visando aumentar a responsividade e a precisão das previsões em cenários de mercado voláteis. A transformação wavelet permite decompor o retorno dos ativos em frequências altas e baixas, capturando com precisão as tendências de longo prazo do mercado e as flutuações de curto prazo.
preview
Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?

Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?

Este trabalho apresenta uma análise da interação entre diferentes funções de ativação e algoritmos de otimização no contexto do treinamento de redes neurais. A atenção principal está voltada para a comparação entre o ADAM clássico e sua versão populacional ao lidar com uma ampla gama de funções de ativação, incluindo as funções oscilatórias ACON e Snake. Mediante uma arquitetura MLP minimalista (1-1-1) e um único exemplo de treino, isola-se a influência das funções de ativação no processo de otimização, eliminando interferências de outros fatores. Propomos um método de controle dos pesos da rede por meio dos limites das funções de ativação e um mecanismo de reflexão de pesos, permitindo evitar problemas de saturação e estagnação no aprendizado.
preview
Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

No artigo anterior, exploramos os fundamentos teóricos e começamos a implementar as abordagens do framework Multitask-Stockformer, que combina wavelet transform e o modelo multitarefa Self-Attention. Damos continuidade à implementação dos algoritmos desse framework e avaliamos sua eficácia com dados históricos reais.
preview
Redes neurais em trading: Agente com memória multinível (Conclusão)

Redes neurais em trading: Agente com memória multinível (Conclusão)

Damos continuidade ao desenvolvimento do framework FinMem, que utiliza abordagens de memória multinível, imitando os processos cognitivos humanos. Isso permite que o modelo não apenas processe dados financeiros complexos de forma eficiente, mas também se adapte a novos sinais, aumentando significativamente a precisão e a efetividade das decisões de investimento em mercados altamente dinâmicos.
preview
Analisamos o código binário dos preços no mercado (Parte I): Um novo olhar sobre a análise técnica

Analisamos o código binário dos preços no mercado (Parte I): Um novo olhar sobre a análise técnica

Este artigo apresenta uma abordagem inovadora para a análise técnica, baseada na conversão dos movimentos de preço em código binário. O autor mostra como diferentes aspectos do comportamento do mercado - desde movimentos simples de preço até padrões complexos - podem ser codificados em sequências de zeros e uns.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização

Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização

A regularização é uma forma de penalizar a função de perda em proporção ao peso discreto aplicado ao longo das várias camadas de uma rede neural. Vamos observar a importância de algumas formas de regularização e o impacto que isso pode ter em testes realizados com um Expert Advisor montado por um assistente.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda

A função de perda (Loss Function) é uma métrica fundamental nos algoritmos de aprendizado de máquina, que fornece feedback para o processo de aprendizado ao quantificar o quão bem um determinado conjunto de parâmetros se comporta em comparação com o valor-alvo esperado. Vamos explorar os diferentes formatos dessa função na classe personalizada do Assistente MQL5.
preview
Redes neurais em trading: Agente com memória em camadas

Redes neurais em trading: Agente com memória em camadas

As abordagens de memória em camadas, que imitam os processos cognitivos humanos, permitem processar dados financeiros complexos e se adaptar a novos sinais, o que contribui para decisões de investimento mais eficazes em mercados dinâmicos.
preview
Aplicando Seleção de Recursos Localizada em Python e MQL5

Aplicando Seleção de Recursos Localizada em Python e MQL5

Este artigo explora um algoritmo de seleção de recursos introduzido no artigo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. O algoritmo é implementado em Python para construir modelos de classificação binária que podem ser integrados com aplicativos MetaTrader 5 para inferência.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 34): Embedding de Preços com um RBM Não Convencional

Técnicas do MQL5 Wizard que você deve conhecer (Parte 34): Embedding de Preços com um RBM Não Convencional

Máquinas de Boltzmann Restritas são uma forma de rede neural que foi desenvolvida no meio da década de 1980, numa época em que os recursos computacionais eram extremamente caros. No início, ela dependia de Gibbs Sampling e Divergência Contrastiva para reduzir a dimensionalidade ou capturar as probabilidades/propriedades ocultas sobre os conjuntos de dados de treinamento de entrada. Examinamos como o Backpropagation pode realizar de forma similar quando o RBM 'embebe' os preços para um Multi-Layer-Perceptron de previsão.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 35): Regressão por Vetores de Suporte

Técnicas do MQL5 Wizard que você deve conhecer (Parte 35): Regressão por Vetores de Suporte

A Regressão por Vetores de Suporte é uma maneira idealista de encontrar uma função ou 'hiperplano' que melhor descreva a relação entre dois conjuntos de dados. Tentamos explorar isso na previsão de séries temporais dentro das classes personalizadas do MQL5 wizard.
preview
Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.
preview
Computação quântica e trading: Um novo olhar sobre as previsões de preços

Computação quântica e trading: Um novo olhar sobre as previsões de preços

Este artigo analisa uma abordagem inovadora para prever os movimentos de preços nos mercados financeiros mediante computação quântica. O foco principal está na aplicação do algoritmo de estimativa de fase quântica (QPE) para buscar precursores de padrões de preços, o que permite acelerar significativamente o processo de análise de dados de mercado.