Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)
Damos continuidade à análise do StockFormer, um sistema híbrido de negociação que combina codificação preditiva e algoritmos de aprendizado por reforço para análise de séries temporais financeiras. O sistema se baseia em três ramificações Transformer com o mecanismo Diversified Multi-Head Attention (DMH-Attn), que permite identificar padrões complexos e interrelações entre ativos. Anteriormente, aprendemos os aspectos teóricos do framework e implementamos os mecanismos do DMH-Attn; hoje vamos abordar a arquitetura dos modelos e seu treinamento.
Anotação de dados na análise de série temporal (Parte 4): Decomposição da interpretabilidade usando anotação de dados
Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
Interpretação de modelos: Compreensão mais profunda dos modelos de aprendizado de máquina
O aprendizado de máquina é uma área fascinante e essencial para todos, independentemente da experiência que possuam. Neste artigo, vamos mergulhar nos detalhes dos mecanismos que fundamentam os modelos desenvolvidos, desvendaremos o intricado universo das características, das previsões e das soluções robustas, e alcançaremos uma interpretação cristalina dos modelos. Descubra como “fazer concessões”, aprimorar previsões, priorizar a importância dos parâmetros e fazer escolhas assertivas. Este texto servirá de guia para você aprimorar a eficácia dos modelos de aprendizado de máquina e maximizar os benefícios das metodologias aplicadas.
Gerente de risco profissional remoto para Forex em Python
Criamos um gerente de risco profissional remoto para Forex em Python e o implantamos em um servidor, passo a passo. Ao longo do artigo, veremos como gerenciar riscos no Forex de maneira programada e como evitar a perda total do depósito.
Redes neurais de maneira fácil (Parte 41): Modelos Hierárquicos
Este artigo descreve modelos hierárquicos de aprendizado que propõem uma abordagem eficaz para resolver tarefas complexas de aprendizado de máquina. Os modelos hierárquicos consistem em vários níveis, cada um responsável por aspectos diferentes da tarefa.
Teoria das Categorias em MQL5 (Parte 19): Indução do quadrado de naturalidade
Continuamos a análise das transformações naturais, examinando a indução do quadrado de naturalidade. Por causa das limitações na implementação de várias moedas para os Expert Advisors desenvolvidos com o assistente MQL5, temos de buscar soluções criativas e eficientes para a classificação de dados usando scripts. As principais áreas de aplicação consideradas são a classificação de variações de preço e, consequentemente, sua previsão.
Redes neurais em trading: Superpoint Transformer (SPFormer)
Neste artigo, apresentamos um método de segmentação de objetos 3D baseado no Superpoint Transformer (SPFormer), que elimina a necessidade de agregação intermediária de dados. Isso acelera o processo de segmentação e melhora o desempenho do modelo.
Quantificação no aprendizado de máquina (Parte 2): Pré-processamento de dados, seleção de tabelas, treinamento do modelo CatBoost
Este artigo trata da aplicação prática da quantização na construção de modelos baseados em árvores. São examinados métodos para selecionar tabelas quantizadas e para o pré-processamento de dados. O material será apresentado em linguagem acessível, sem fórmulas matemáticas complexas.
O escore de propensão na inferência causalidade
O artigo examina o tema de pareamento na inferência causal. O pareamento é utilizado para comparar observações semelhantes em um conjunto de dados. Isso é necessário para determinar corretamente os efeitos causais e eliminar o viés. O autor explica como isso ajuda na construção de sistemas de negociação baseados em aprendizado de máquina, que se tornam mais estáveis em novos dados nos quais não foram treinados. O escore de propensão desempenha um papel central e é amplamente utilizado na inferência causal.
Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)
Neste artigo, apresento o algoritmo GTGAN, que foi introduzido em janeiro de 2024 para resolver tarefas complexas de criação de layout arquitetônico com restrições de grafos.
Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (MASAAT)
Apresentamos a estrutura adaptativa multiagente para otimização de portfólio financeiro (MASAAT), que integra mecanismos de atenção e análise de séries temporais. O MASAAT forma um conjunto de agentes que analisam séries de preços e mudanças direcionais, permitindo identificar variações significativas nos preços dos ativos em diferentes níveis de detalhamento.
Redes neurais de maneira fácil (Parte 53): decomposição de recompensa
Já falamos várias vezes sobre a importância de escolher corretamente a função de recompensa que usamos para incentivar o comportamento desejável do Agente, adicionando recompensas ou penalidades por ações específicas. Mas a questão de como o Agente interpreta nossos sinais permanece em aberto. Neste artigo, discutiremos a decomposição da recompensa em termos de transmissão de sinais individuais ao Agente a ser treinado.
Algoritmos de otimização populacional: simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA). Parte II
A primeira parte do artigo foi dedicada ao conhecido e popular algoritmo de têmpera simulada, onde foram analisadas suas vantagens e descritos detalhadamente os pontos fracos. A segunda parte do artigo é dedicada a uma transformação radical do algoritmo, seu renascimento em um novo algoritmo de otimização, a simulação de têmpera isotrópica, SIA.
Busca com restrições — Tabu Search (TS)
O artigo analisa o algoritmo de busca tabu, um dos primeiros e mais conhecidos métodos meta-heurísticos. Exploraremos detalhadamente como o algoritmo funciona, desde a escolha da solução inicial até a exploração das soluções vizinhas, com foco no uso da lista tabu. O artigo cobre os aspectos-chave do algoritmo e suas particularidades.
Redes neurais em trading: Transformer vetorial hierárquico (HiVT)
Apresentamos o método Transformer Vetorial Hierárquico (HiVT), desenvolvido para a previsão rápida e precisa de séries temporais multimodais.
Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)
Neste artigo, gostaria de apresentar outro tipo de modelos voltados para o estudo da dinâmica do estado do ambiente.
Ciência de Dados e Aprendizado de Máquina (Parte 16): Uma nova perspectiva sobre árvores de decisão
Na última parte da nossa série sobre aprendizado de máquina e trabalho com big data, voltamos a falar sobre as árvores de decisão. Este artigo é destinado a traders que desejam entender o papel das árvores de decisão na análise de tendências de mercado. Aqui, reunimos todas as informações principais sobre a estrutura, o propósito e o uso dessas árvores. Vamos explorar as raízes e os ramos das árvores algorítmicas e descobrir como elas podem ser aplicadas na tomada de decisões de negociação. Vamos juntos dar um novo olhar às árvores de decisão e ver como elas podem ajudar a superar as dificuldades nos mercados financeiros.
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 16): Método de componentes principais com autovetores
Este artigo discute o método de componentes principais, um método de redução da dimensionalidade ao analisar dados, e como ele pode ser implementado usando autovalores e vetores. Como sempre, vamos tentar desenvolver um protótipo da classe de sinais para EA que pode ser usado no Assistente MQL5.
Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço
Continuamos a análise dos algoritmos de aprendizado de modelos de previsão de trajetórias. E neste artigo, proponho que você conheça o método chamado “AutoBots”.
Algoritmo de Fechadura Codificada (Code Lock Algorithm, CLA)
Neste artigo, vamos repensar as fechaduras codificadas, transformando-as de mecanismos de proteção em ferramentas para resolver tarefas complexas de otimização. Descubra o mundo das fechaduras codificadas, não como simples dispositivos de segurança, mas como inspiração para uma nova abordagem à otimização. Vamos criar uma população inteira de "fechaduras", onde cada uma representa uma solução única para um problema. Em seguida, desenvolveremos um algoritmo que "destrancará" essas fechaduras e encontrará soluções ideais em várias áreas, desde o aprendizado de máquina até o desenvolvimento de sistemas de trading.
Escrevemos o primeiro modelo de caixa de vidro (Glass Box) em Python e MQL5
Os modelos de aprendizado de máquina são difíceis de interpretar, e entender o motivo pelo qual os modelos não atendem às nossas expectativas pode ajudar muito a alcançar o resultado desejado ao usar esses métodos modernos. Sem um entendimento abrangente do funcionamento interno do modelo, pode ser difícil identificar erros que prejudicam o desempenho. Nesse processo, podemos dedicar tempo a criar funções que não impactam na qualidade da previsão. No final, por melhor que seja o modelo, perdemos todos os seus principais benefícios devido a nossos próprios erros. Felizmente, existe uma solução complexa, mas bem desenvolvida, que permite ver claramente o que está acontecendo sob o capô do modelo.
Superando Desafios de Integração com ONNX
ONNX é uma ótima ferramenta para integrar códigos complexos de IA entre diferentes plataformas, sendo uma ferramenta excelente, mas que vem com alguns desafios que devem ser superados para aproveitar ao máximo suas capacidades. Neste artigo, discutimos os problemas mais comuns que você pode enfrentar e como mitigá-los.
Rede neural na prática: Pseudo Inversa (II)
Por conta do fato, de que estes artigos visam a didática. E não para mostrar como implementar esta ou aquela funcionalidade. Vamos fazer algo um pouco diferente aqui. Em vez de mostrar como implementar a fatoração para conseguir a inversa de uma matriz. Vamos focar em como fatorar a pseudo inversa. O motivo é que não faz sentido, mostrar como fatorar algo de forma genérica. Se podemos fazer a mesma coisa de forma especializada. E melhor, será algo que você, conseguirá entender muito mais do por que as coisas serem como são. Então vamos ver por que um hardware aparece depois de um tempo, em substituição a um software.
Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM
Vamos guiá-lo por todo o processo de DL com Python para criar um modelo GRU em ONNX, culminando na criação de um Expert Advisor (EA) projetado para negociação, e, posteriormente, comparando o modelo GRU com o modelo LSTM.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton
Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD
Muitos modelos de inteligência artificial são projetados para prever um único valor futuro. Neste artigo, veremos como utilizar modelos de aprendizado de máquina para prever múltiplos valores futuros. Essa abordagem, chamada de previsão multietapa, permite não apenas prever o preço de fechamento de amanhã, mas também o de depois de amanhã e assim por diante. A previsão multietapa oferece uma vantagem inegável para traders e analistas de dados, pois amplia o espectro de informações para oportunidades de planejamento estratégico.
Reimaginando Estratégias Clássicas: Petróleo Bruto
Neste artigo, revisitamos uma estratégia clássica de negociação de petróleo bruto com o objetivo de aprimorá-la, utilizando algoritmos de aprendizado de máquina supervisionado. Vamos construir um modelo de mínimos quadrados para prever os preços futuros do petróleo Brent, com base na diferença entre os preços do Brent e do WTI. Nosso objetivo é identificar um indicador líder de futuras mudanças nos preços do Brent.
Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)
Neste artigo, exploramos a integração dinâmica das Redes Neurais Convolucionais (CNNs) e das Redes Neurais Recorrentes (RNNs) na previsão do mercado de ações. Aproveitando a capacidade das CNNs de extrair padrões e a proficiência das RNNs em lidar com dados sequenciais. Vamos ver como essa combinação poderosa pode aumentar a precisão e eficiência dos algoritmos de negociação.
Análise volumétrica com redes neurais como chave para tendências futuras
O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)
Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.
Rede neural na prática: A prática leva a perfeição
Neste artigo mostrarei como, uma simples mudança no código, a fim de tornar o neurônio um pouco mais especializado. Pode tornar a fase de treinamento consideravelmente mais rápida. Visto que uma vez que o neurônio, ou rede neural, como será visto mais para frente. Já estiver sido treinada. O trabalho executado por ela, será feito de maneira muito mais rápida. Também falarei de um problema que existe, do qual poucos mencionam.
Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line
O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.
Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos
Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.
Algoritmo de algas artificiais (AAA)
Este artigo aborda o algoritmo de algas artificiais (AAA), desenvolvido com base nos processos biológicos característicos das microalgas. Ele incorpora movimento espiral, processo evolutivo e adaptação, e possibilita a resolução de problemas de otimização. O artigo oferece uma análise detalhada dos princípios de funcionamento do AAA e seu potencial na modelagem matemática, destacando a conexão entre a natureza e as soluções algorítmicas.
Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)
No artigo anterior, nos familiarizamos com um dos métodos de detecção de objetos em imagens. No entanto, o processamento de imagens estáticas é um pouco diferente do trabalho com séries temporais dinâmicas, como aquelas relacionadas à dinâmica dos preços que estamos analisando. Neste artigo, quero apresentar a você o método de detecção de objetos em vídeo, que é mais relevante para a nossa tarefa atual.
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF
A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
Indicador de previsão de volatilidade usando Python
Vamos prever a volatilidade extrema futura com ajuda da classificação binária. Criamos um indicador de previsão de volatilidade extrema com uso de aprendizado de máquina.
Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados
Neste artigo, discutiremos a aplicação do algoritmo Go-Explore ao longo de um período de treinamento prolongado, uma vez que uma estratégia de seleção aleatória de ações pode não levar a uma passagem lucrativa à medida que o tempo de treinamento aumenta.
Quantificação no aprendizado de máquina (Parte 1): Teoria, exemplo de código, análise da implementação no CatBoost
Neste artigo, discutiremos a aplicação teórica da quantização ao construir modelos baseados em árvores. São examinados os métodos de quantização implementados no CatBoost. O material será apresentado em linguagem acessível, sem fórmulas matemáticas complexas.
Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço
Existem muitas postagens no Fórum MQL5 pedindo ajuda para calcular a inclinação das mudanças de preço. Este artigo demonstrará uma forma possível de calcular o ângulo formado pelas variações de preço em qualquer mercado que você deseje negociar. Além disso, responderemos se desenvolver esse novo recurso vale o esforço e o tempo adicionais investidos. Vamos explorar se a inclinação do preço pode melhorar a precisão de algum dos nossos modelos de IA ao prever o par USDZAR no M1.