Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.
preview
Testador rápido de estratégias de trading em Python usando Numba

Testador rápido de estratégias de trading em Python usando Numba

O artigo apresenta um testador rápido de estratégias para modelos de aprendizado de máquina com o uso do Numba. Em termos de velocidade, ele supera o testador de estratégias feito em Python puro em 50 vezes. O autor recomenda o uso dessa biblioteca para acelerar cálculos matemáticos, especialmente em casos que envolvem laços.
preview
Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.
preview
Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Desde os primeiros artigos sobre aprendizado por reforço, a gente sempre falou de duas coisas: como explorar o ambiente e definir a função de recompensa. Os artigos mais recentes foram dedicados à exploração durante o aprendizado off-line. Neste aqui, quero apresentar a você um algoritmo em que os autores resolveram deixar de lado a função de recompensa.
preview
ADAM Populacional (estimativa adaptativa de momentos)

ADAM Populacional (estimativa adaptativa de momentos)

Este artigo apresenta a transformação do conhecido e popular método de otimização por gradiente ADAM em um algoritmo populacional e sua modificação com a introdução de indivíduos híbridos. A nova abordagem permite criar agentes que combinam elementos de soluções bem-sucedidas usando uma distribuição probabilística. A principal inovação é a formação de indivíduos híbridos populacionais, que acumulam de forma adaptativa informações das soluções mais promissoras, aumentando a eficácia da busca em espaços multidimensionais complexos.
preview
Trabalho com modelos ONNX nos formatos float16 e float8

Trabalho com modelos ONNX nos formatos float16 e float8

Os formatos de dados utilizados para representar modelos de aprendizado de máquina desempenham um papel fundamental em sua eficiência. Nos últimos anos, surgiram vários novos tipos de dados desenvolvidos especificamente para trabalhar com modelos de aprendizado profundo. Neste artigo, vamos focar em dois novos formatos de dados que se tornaram amplamente utilizados nos modelos modernos.
preview
Superando Desafios de Integração com ONNX

Superando Desafios de Integração com ONNX

ONNX é uma ótima ferramenta para integrar códigos complexos de IA entre diferentes plataformas, sendo uma ferramenta excelente, mas que vem com alguns desafios que devem ser superados para aproveitar ao máximo suas capacidades. Neste artigo, discutimos os problemas mais comuns que você pode enfrentar e como mitigá-los.
preview
Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

No mundo acelerado dos mercados financeiros, separar sinais significativos do ruído é crucial para o sucesso nas operações de trading. Ao empregar arquiteturas sofisticadas de redes neurais, os autoencoders se destacam ao descobrir padrões ocultos dentro dos dados de mercado, transformando entradas ruidosas em insights acionáveis. Neste artigo, exploramos como os autoencoders estão revolucionando as práticas de trading, oferecendo aos traders uma ferramenta poderosa para melhorar a tomada de decisões e ganhar uma vantagem competitiva nos mercados dinâmicos de hoje.
preview
Teoria das Categorias em MQL5 (Parte 21): Transformações naturais com LDA

Teoria das Categorias em MQL5 (Parte 21): Transformações naturais com LDA

Este artigo, o 21º de nossa série, continua nossa análise das transformações naturais e de como elas podem ser implementadas usando a análise discriminante linear. Assim como no artigo anterior, a implementação é apresentada no formato de uma classe de sinal.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
preview
O escore de propensão na inferência causalidade

O escore de propensão na inferência causalidade

O artigo examina o tema de pareamento na inferência causal. O pareamento é utilizado para comparar observações semelhantes em um conjunto de dados. Isso é necessário para determinar corretamente os efeitos causais e eliminar o viés. O autor explica como isso ajuda na construção de sistemas de negociação baseados em aprendizado de máquina, que se tornam mais estáveis em novos dados nos quais não foram treinados. O escore de propensão desempenha um papel central e é amplamente utilizado na inferência causal.
preview
Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias

Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias

Os modelos que estamos criando estão se tornando cada vez maiores e mais complexos. Com isso, aumentam os custos não apenas para o treinamento, mas também para a operação. Além disso, muitas vezes nos deparamos com situações em que o tempo de tomada de decisão é crítico. E, por isso, voltamos nossa atenção para métodos de otimização de desempenho dos modelos sem perder qualidade.
preview
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
preview
Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR

Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR

Nesta série de artigos, revisitamos estratégias clássicas para verificar se podemos melhorá-las usando IA. No artigo de hoje, examinaremos uma estratégia popular de análise de múltiplos símbolos utilizando uma cesta de ativos correlacionados. Focaremos no par de moedas exótico USDZAR.
preview
Algoritmo de arquearia — Archery Algorithm (AA)

Algoritmo de arquearia — Archery Algorithm (AA)

Neste artigo, examinamos detalhadamente o algoritmo de otimização inspirado na arquearia, com foco no uso do método de roleta como mecanismo de seleção de áreas promissoras para a colocação das "flechas". Esse método permite avaliar a qualidade das soluções e selecionar as posições mais promissoras para um estudo mais aprofundado.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Damos continuidade à análise do StockFormer, um sistema híbrido de negociação que combina codificação preditiva e algoritmos de aprendizado por reforço para análise de séries temporais financeiras. O sistema se baseia em três ramificações Transformer com o mecanismo Diversified Multi-Head Attention (DMH-Attn), que permite identificar padrões complexos e interrelações entre ativos. Anteriormente, aprendemos os aspectos teóricos do framework e implementamos os mecanismos do DMH-Attn; hoje vamos abordar a arquitetura dos modelos e seu treinamento.
preview
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
preview
Quantificação no aprendizado de máquina (Parte 1): Teoria, exemplo de código, análise da implementação no CatBoost

Quantificação no aprendizado de máquina (Parte 1): Teoria, exemplo de código, análise da implementação no CatBoost

Neste artigo, discutiremos a aplicação teórica da quantização ao construir modelos baseados em árvores. São examinados os métodos de quantização implementados no CatBoost. O material será apresentado em linguagem acessível, sem fórmulas matemáticas complexas.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.
preview
Algoritmo de busca através de vizinhança — Across Neighborhood Search (ANS)

Algoritmo de busca através de vizinhança — Across Neighborhood Search (ANS)

O artigo explora o potencial do algoritmo ANS, como um passo relevante no desenvolvimento de métodos de otimização flexíveis e inteligentes, capazes de considerar as especificidades da tarefa e a dinâmica do ambiente no espaço de busca.
preview
Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

As Redes Neurais Convolucionais (CNNs) são renomadas por sua capacidade de detectar padrões em imagens e vídeos, com aplicações em diversos campos. Neste artigo, exploramos o potencial das CNNs para identificar padrões valiosos nos mercados financeiros e gerar sinais de trading eficazes para bots de negociação no MetaTrader 5. Vamos descobrir como essa técnica de aprendizado profundo pode ser aproveitada para decisões de trading mais inteligentes.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.
preview
Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
preview
Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
preview
Interpretação de modelos: Compreensão mais profunda dos modelos de aprendizado de máquina

Interpretação de modelos: Compreensão mais profunda dos modelos de aprendizado de máquina

O aprendizado de máquina é uma área fascinante e essencial para todos, independentemente da experiência que possuam. Neste artigo, vamos mergulhar nos detalhes dos mecanismos que fundamentam os modelos desenvolvidos, desvendaremos o intricado universo das características, das previsões e das soluções robustas, e alcançaremos uma interpretação cristalina dos modelos. Descubra como “fazer concessões”, aprimorar previsões, priorizar a importância dos parâmetros e fazer escolhas assertivas. Este texto servirá de guia para você aprimorar a eficácia dos modelos de aprendizado de máquina e maximizar os benefícios das metodologias aplicadas.
preview
Agrupamento de séries temporais na inferência causal

Agrupamento de séries temporais na inferência causal

Os algoritmos de agrupamento em aprendizado de máquina são ferramentas importantes de aprendizado não supervisionado que permitem dividir os dados brutos em grupos com características semelhantes. Com esses grupos, é possível, por exemplo, realizar análise de mercado para um cluster específico, identificar os clusters mais resilientes em novos conjuntos de dados e também realizar inferências causais. Este artigo apresenta um método original para o agrupamento de séries temporais, utilizando a linguagem Python.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 21): Testando com Dados do Calendário Econômico

Técnicas do MQL5 Wizard que você deve conhecer (Parte 21): Testando com Dados do Calendário Econômico

Os dados do Calendário Econômico não estão disponíveis para testes com Expert Advisors no Strategy Tester, por padrão. Vamos explorar como bancos de dados poderiam ajudar a contornar essa limitação. Portanto, neste artigo, exploramos como os bancos de dados SQLite podem ser usados para arquivar notícias do Calendário Econômico, de modo que os Expert Advisors montados pelo Wizard possam usá-los para gerar sinais de trade.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 16): Uma nova perspectiva sobre árvores de decisão

Ciência de Dados e Aprendizado de Máquina (Parte 16): Uma nova perspectiva sobre árvores de decisão

Na última parte da nossa série sobre aprendizado de máquina e trabalho com big data, voltamos a falar sobre as árvores de decisão. Este artigo é destinado a traders que desejam entender o papel das árvores de decisão na análise de tendências de mercado. Aqui, reunimos todas as informações principais sobre a estrutura, o propósito e o uso dessas árvores. Vamos explorar as raízes e os ramos das árvores algorítmicas e descobrir como elas podem ser aplicadas na tomada de decisões de negociação. Vamos juntos dar um novo olhar às árvores de decisão e ver como elas podem ajudar a superar as dificuldades nos mercados financeiros.
preview
Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (MASAAT)

Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (MASAAT)

Apresentamos a estrutura adaptativa multiagente para otimização de portfólio financeiro (MASAAT), que integra mecanismos de atenção e análise de séries temporais. O MASAAT forma um conjunto de agentes que analisam séries de preços e mudanças direcionais, permitindo identificar variações significativas nos preços dos ativos em diferentes níveis de detalhamento.
preview
Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM

Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM

Vamos guiá-lo por todo o processo de DL com Python para criar um modelo GRU em ONNX, culminando na criação de um Expert Advisor (EA) projetado para negociação, e, posteriormente, comparando o modelo GRU com o modelo LSTM.
preview
Hibridização de algoritmos populacionais. Estruturas sequenciais e paralelas

Hibridização de algoritmos populacionais. Estruturas sequenciais e paralelas

Aqui, vamos mergulhar no mundo da hibridização de algoritmos de otimização, analisando três tipos principais: mistura de estratégias, hibridização sequencial e paralela. Realizaremos uma série de experimentos combinando e testando algoritmos de otimização relevantes.
preview
Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.
preview
Algoritmo de algas artificiais (AAA)

Algoritmo de algas artificiais (AAA)

Este artigo aborda o algoritmo de algas artificiais (AAA), desenvolvido com base nos processos biológicos característicos das microalgas. Ele incorpora movimento espiral, processo evolutivo e adaptação, e possibilita a resolução de problemas de otimização. O artigo oferece uma análise detalhada dos princípios de funcionamento do AAA e seu potencial na modelagem matemática, destacando a conexão entre a natureza e as soluções algorítmicas.
preview
Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)

Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)

Neste artigo, vamos explorar o novo algoritmo de otimização autoral CTA (Comet Tail Algorithm), que se inspira em objetos cósmicos únicos, nomeadamente em cometas e suas impressionantes caudas, formadas quando se aproximam do Sol. Esse algoritmo é baseado no conceito de movimento dos cometas e suas caudas, e foi projetado para encontrar soluções ótimas em problemas de otimização.
preview
Algoritmo de Fechadura Codificada (Code Lock Algorithm, CLA)

Algoritmo de Fechadura Codificada (Code Lock Algorithm, CLA)

Neste artigo, vamos repensar as fechaduras codificadas, transformando-as de mecanismos de proteção em ferramentas para resolver tarefas complexas de otimização. Descubra o mundo das fechaduras codificadas, não como simples dispositivos de segurança, mas como inspiração para uma nova abordagem à otimização. Vamos criar uma população inteira de "fechaduras", onde cada uma representa uma solução única para um problema. Em seguida, desenvolveremos um algoritmo que "destrancará" essas fechaduras e encontrará soluções ideais em várias áreas, desde o aprendizado de máquina até o desenvolvimento de sistemas de trading.
preview
Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Muitos modelos de inteligência artificial são projetados para prever um único valor futuro. Neste artigo, veremos como utilizar modelos de aprendizado de máquina para prever múltiplos valores futuros. Essa abordagem, chamada de previsão multietapa, permite não apenas prever o preço de fechamento de amanhã, mas também o de depois de amanhã e assim por diante. A previsão multietapa oferece uma vantagem inegável para traders e analistas de dados, pois amplia o espectro de informações para oportunidades de planejamento estratégico.
preview
Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)

Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)

Apresentamos o novo framework PSformer, que adapta a arquitetura do Transformer puro para resolver tarefas de previsão de séries temporais multivariadas. O framework é baseado em duas inovações principais: o mecanismo de compartilhamento de parâmetros (PS) e a atenção aos segmentos espaço-temporais (SegAtt).