Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA
MQL5 bietet unendlich viele Möglichkeiten, automatisierte Handelssysteme zu entwickeln, die auf Ihre Wünsche zugeschnitten sind. Wussten Sie, dass er sogar komplexe mathematische Berechnungen durchführen kann? In diesem Artikel stellen wir die japanische Heikin Ashi Technik als automatisierte Handelsstrategie vor.
Elemente der Korrelationsanalyse in MQL5: Chi-Quadrat-Test nach Pearson auf Unabhängigkeit und Korrelationsverhältnis
In dem Artikel werden die klassischen Instrumente der Korrelationsanalyse betrachtet. Der Schwerpunkt liegt auf einem kurzen theoretischen Hintergrund sowie auf der praktischen Anwendung des Pearson-Chi-Quadrat-Tests auf Unabhängigkeit und des Korrelationsverhältnisses.
Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle
In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.
Quantitativer Ansatz für das Risikomanagement: Anwendung des VaR-Modells zur Optimierung eines Multiwährungsportfolios mit Python und MetaTrader 5
In diesem Artikel wird das Potenzial des Value-at-Risk (VaR)-Modells für die Optimierung von Portfolios in mehreren Währungen untersucht. Mit Hilfe von Python und der Funktionalität von MetaTrader 5 demonstrieren wir, wie man eine VaR-Analyse für eine effiziente Kapitalallokation und Positionsverwaltung implementiert. Von den theoretischen Grundlagen bis zur praktischen Umsetzung behandelt der Artikel alle Aspekte der Anwendung eines der robustesten Risikoberechnungssysteme - VaR - im algorithmischen Handel.
Larry Connors‘ Strategien RSI2 Mean-Reversion im Day-Trading
Larry Connors ist ein renommierter Händler und Autor, der vor allem für seine Arbeit im Bereich des quantitativen Handels und für Strategien wie den 2-Perioden-RSI (RSI2) bekannt ist, der dabei hilft, kurzfristig überkaufte und überverkaufte Marktbedingungen zu erkennen. In diesem Artikel werden wir zunächst die Motivation für unsere Forschung erläutern, dann drei von Connors' berühmtesten Strategien in MQL5 nachbilden und sie auf den Intraday-Handel mit dem S&P 500 Index CFD anwenden.
Datenwissenschaft und ML (Teil 41): Mustererkennung mit YOLOv8 im Forex und den Aktienmärkten
Die Erkennung von Mustern auf den Finanzmärkten ist eine Herausforderung, denn dazu muss man sehen, was auf dem Chart zu sehen ist, und das ist in MQL5 aufgrund der Bildbeschränkungen schwierig zu bewerkstelligen. In diesem Artikel werden wir ein anständiges Modell in Python besprechen, das uns hilft, mit minimalem Aufwand Muster im Chart zu erkennen.
Developing a Replay System (Part 36): Making Adjustments (II)
One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
Ordinale Kodierung für Nominalvariablen
In diesem Artikel erörtern und demonstrieren wir, wie man nominale Prädiktoren in numerische Formate umwandelt, die für Algorithmen des maschinellen Lernens geeignet sind, und zwar sowohl mit Python als auch mit MQL5.
Gating-Mechanismen beim Ensemblelernen
In diesem Artikel setzen wir unsere Untersuchung von Ensemblemodellen fort, indem wir das Konzept der Gates erörtern, insbesondere wie sie bei der Kombination von Modellergebnissen nützlich sein können, um entweder die Vorhersagegenauigkeit oder die Modellgeneralisierung zu verbessern.
Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen
In diesem Artikel werden wir uns den Mersenne-Twister-Zufallszahlengenerator ansehen und ihn mit dem Standardgenerator in MQL5 vergleichen. Wir werden auch herausfinden, welchen Einfluss die Qualität des Zufallszahlengenerators auf die Ergebnisse der Optimierungsalgorithmen hat.
Entwicklung eines Replay Systems (Teil 53): Die Dinge werden kompliziert (V)
In diesem Artikel behandeln wir ein wichtiges Thema, das nur wenige Menschen verstehen: Nutzerdefinierte Ereignisse. Gefahren. Vor- und Nachteile dieser Elemente. Dieses Thema ist der Schlüssel für diejenigen, die professionelle Programmierer in MQL5 oder einer anderen Sprache werden wollen. Hier werden wir uns auf MQL5 und MetaTrader 5 konzentrieren.
Algorithmus einer Anarchischen Gesellschaftsoptimierung (ASO)
In diesem Artikel machen wir uns mit dem Algorithmus Anarchic Society Optimization (Anarchischen Gesellschaftsoptimierung, ASO) vertraut und erörtern, wie ein Algorithmus, der auf dem irrationalen und abenteuerlichen Verhalten von Teilnehmern in einer anarchischen Gesellschaft (einem anomalen System sozialer Interaktion, das frei von zentraler Macht und verschiedenen Arten von Hierarchien ist) basiert, in der Lage ist, den Lösungsraum zu erkunden und die Fallen des lokalen Optimums zu vermeiden. Der Artikel stellt eine einheitliche ASO-Struktur vor, die sowohl auf kontinuierliche als auch auf diskrete Probleme anwendbar ist.
Entwicklung eines Replay Systems (Teil 46): Chart Trade Projekt (V)
Sind Sie es leid, Zeit mit der Suche nach genau der Datei zu verschwenden, die Ihre Anwendung zum Funktionieren braucht? Wie wäre es, alles in die ausführbare Datei aufzunehmen? Auf diese Weise müssen Sie nicht nach den Dingen suchen. Ich weiß, dass viele Menschen diese Form der Verteilung und Speicherung nutzen, aber es gibt einen viel geeigneteren Weg. Zumindest was die Verteilung von ausführbaren Dateien und deren Speicherung betrifft. Die hier vorgestellte Methode kann sehr nützlich sein, da Sie den MetaTrader 5 selbst als hervorragenden Assistenten verwenden können, ebenso wie MQL5. Außerdem ist es nicht so schwer zu verstehen.
Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)
Die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) ist eine innovative Methode, bei der eine binäre Matrix und mehrere dynamische Populationen auf der Grundlage von wechselseitigen Beziehungen und Kooperation verwendet werden, um schnell und genau optimale Lösungen zu finden. Der einzigartige Ansatz von ACS in Bezug auf Räuber und Beute ermöglicht es, hervorragende Ergebnisse bei numerischen Optimierungsproblemen zu erzielen.
Integration von MQL5 mit Datenverarbeitungspaketen (Teil 4): Umgang mit großen Daten
Dieser Teil befasst sich mit fortgeschrittenen Techniken zur Integration von MQL5 mit leistungsstarken Datenverarbeitungswerkzeugen und konzentriert sich auf den effizienten Umgang mit Big Data zur Verbesserung der Handelsanalyse und Entscheidungsfindung.
Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse
In diesem Artikel werden wir den Künstlichen Bienenstockalgorithmus (ABHA) weiter erforschen, indem wir in den Code eintauchen und die übrigen Methoden betrachten. Wie Sie sich vielleicht erinnern, wird jede Biene in diesem Modell als individueller Agent dargestellt, dessen Verhalten von internen und externen Informationen sowie von seinem Motivationszustand abhängt. Wir werden den Algorithmus an verschiedenen Funktionen testen und die Ergebnisse in der Bewertungstabelle zusammenfassen.
Algorithmischer Handel auf der Grundlage von 3D-Umkehrmustern
Die Entdeckung einer neuen Welt des automatisierten Handels mit 3D-Bars. Wie sieht ein Handelsroboter auf mehrdimensionalen Preisbalken aus? Sind „gelbe“ Cluster von 3D-Balken in der Lage, Trendumkehrungen vorherzusagen? Wie sieht der multidimensionale Handel aus?
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 17): Der TrendLoom EA
Als Beobachter und Händler von Preisaktionen habe ich festgestellt, dass sich ein Trend in der Regel in diese Richtung fortsetzt, wenn er von mehreren Zeitrahmen bestätigt wird. Wie lange der Trend anhält, hängt davon ab, welcher Art von Händler Sie sind, ob Sie Positionen langfristig halten oder Scalping betreiben. Die Zeiträume, die Sie für die Bestätigung wählen, spielen eine entscheidende Rolle. In diesem Artikel finden Sie ein schnelles, automatisiertes System, mit dem Sie den Gesamttrend über verschiedene Zeiträume hinweg mit nur einem Mausklick oder regelmäßigen Updates analysieren können.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 13): RSI-Sentinel-Tool
Die Kursentwicklung kann durch die Identifizierung von Divergenzen effektiv analysiert werden, wobei technische Indikatoren wie der RSI wichtige Bestätigungssignale liefern. Im folgenden Artikel erläutern wir, wie eine automatisierte RSI-Divergenzanalyse Trendfortsetzungen und -umkehrungen erkennen kann und damit wertvolle Einblicke in die Marktstimmung bietet.
Entwicklung des Price Action Analysis Toolkit (Teil 30): Commodity Channel Index (CCI), Zero Line EA
Die Automatisierung der Preisaktionsanalyse ist der Weg in die Zukunft. In diesem Artikel verwenden wir den Dual CCI-Indikator, die Nulllinien-Kreuzungsstrategie, den EMA und die Kursentwicklung, um ein Tool zu entwickeln, das Handelssignale generiert und Stop-Loss- (SL) und Take-Profit-Levels (TP) unter Verwendung der ATR festlegt. Bitte lesen Sie diesen Artikel, um zu erfahren, wie wir bei der Entwicklung des „CCI Zero Line EA“ vorgehen.
Ökonometrische Instrumente zur Prognose der Volatilität: das GARCH-Modell
Der Artikel beschreibt die Eigenschaften des nichtlinearen Modells der bedingten Heteroskedastizität (GARCH). Der Indikator iGARCH wurde auf seiner Grundlage für die Vorhersage der Volatilität einen Schritt weiter entwickelt. Die numerische Analysebibliothek ALGLIB wird zur Schätzung der Modellparameter verwendet.
Schrittweise Merkmalsauswahl in MQL5
In diesem Artikel stellen wir eine modifizierte Version der schrittweisen Merkmalsauswahl vor, die in MQL5 implementiert ist. Dieser Ansatz basiert auf den Techniken, die in „Modern Data Mining Algorithms in C++ and CUDA C“ von Timothy Masters beschrieben sind.
Trendvorhersage mit LSTM für Trendfolgestrategien
Long Short-Term Memory (LSTM) ist eine Art rekurrentes neuronales Netz (RNN), das für die Modellierung sequenzieller Daten entwickelt wurde, indem es langfristige Abhängigkeiten effektiv erfasst und das Problem des verschwindenden Gradienten löst. In diesem Artikel werden wir untersuchen, wie LSTM zur Vorhersage zukünftiger Trends eingesetzt werden kann, um die Leistung von Trendfolgestrategien zu verbessern. Der Artikel behandelt die Einführung von Schlüsselkonzepten und die Motivation hinter der Entwicklung, das Abrufen von Daten aus dem MetaTrader 5, die Verwendung dieser Daten zum Trainieren des Modells in Python, die Integration des maschinellen Lernmodells in MQL5 und die Reflexion der Ergebnisse und zukünftigen Bestrebungen auf der Grundlage von statistischem Backtesting.
Datenwissenschaft und ML (Teil 40): Verwendung von Fibonacci-Retracements in Daten des maschinellen Lernens
Fibonacci-Retracements sind ein beliebtes Instrument der technischen Analyse, das Händlern hilft, potenzielle Umkehrzonen zu identifizieren. In diesem Artikel werden wir untersuchen, wie diese Retracement-Levels in Zielvariablen für maschinelle Lernmodelle umgewandelt werden können, damit diese den Markt mit Hilfe dieses leistungsstarken Tools besser verstehen können.
Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes
Ein Hinweis: Obwohl der Code für einen Dienst in diesem Artikel nicht enthalten ist und erst im nächsten Artikel zur Verfügung gestellt wird, werde ich ihn erläutern, da wir denselben Code als Sprungbrett für unsere eigentliche Entwicklung verwenden werden. Seien Sie also aufmerksam und geduldig. Warten Sie auf den nächsten Artikel, denn jeden Tag wird es interessanter.
Algorithmus zur Optimierung der Migration der Tiere (AMO)
Der Artikel ist dem AMO-Algorithmus gewidmet, der die saisonale Migration von Tieren auf der Suche nach optimalen Bedingungen für Leben und Fortpflanzung modelliert. Zu den Hauptfunktionen von AMO gehören die Verwendung topologischer Nachbarschaften und ein probabilistischer Aktualisierungsmechanismus, der die Implementierung vereinfacht und die Flexibilität für verschiedene Optimierungsaufgaben gewährleistet.
Vom Neuling zum Experten: Autogeometrisches Analysesystem
Geometrische Muster bieten Händlern eine prägnante Methode zur Interpretation von Kursbewegungen. Viele Analysten zeichnen Trendlinien, Rechtecke und andere Formen mit der Hand und treffen ihre Handelsentscheidungen dann auf der Grundlage der von ihnen gesehenen Formationen. In diesem Artikel untersuchen wir eine automatisierte Alternative: die Nutzung von MQL5 zur Erkennung und Analyse der gängigsten geometrischen Muster. Wir schlüsseln die Methodik auf, erörtern Details der Implementierung und zeigen auf, wie die automatische Mustererkennung die Markteinblicke eines Händlers schärfen kann.
Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 7): Handel mit mehreren Periodenlängen gleichzeitig
In dieser Artikelserie haben wir mehrere verschiedene Möglichkeiten zur Ermittlung der besten Periodenlänge für die Verwendung unserer technischen Indikatoren untersucht. Heute werden wir dem Leser zeigen, wie er stattdessen die umgekehrte Logik anwenden kann, d. h., anstatt die beste Periodenlänge auszuwählen, werden wir dem Leser zeigen, wie er alle verfügbaren Periodenlängen effektiv nutzen kann. Dieser Ansatz reduziert die Menge der verworfenen Daten und bietet alternative Anwendungsmöglichkeiten für Algorithmen des maschinellen Lernens, die über die normale Preisvorhersage hinausgehen.
Selbstoptimierende Expert Advisors in MQL5 (Teil 12): Aufbau von linearen Klassifikatoren durch Matrixfaktorisierung
Dieser Artikel befasst sich mit der leistungsfähigen Rolle der Matrixfaktorisierung im algorithmischen Handel, insbesondere in MQL5-Anwendungen. Von Regressionsmodellen bis hin zu Multi-Target-Klassifikatoren gehen wir durch praktische Beispiele, die zeigen, wie einfach diese Techniken mit Hilfe von integrierten MQL5-Funktionen integriert werden können. Ganz gleich, ob Sie die Kursrichtung vorhersagen oder das Verhalten von Indikatoren modellieren wollen, dieser Leitfaden schafft eine solide Grundlage für den Aufbau intelligenter Handelssysteme mit Hilfe von Matrixmethoden.
Erstellen von 3D-Balken auf der Grundlage von Zeit, Preis und Volumen
Der Artikel befasst sich mit multivariaten Kurs-Charts in 3D und deren Erstellung. Wir werden auch untersuchen, wie 3D-Balken eine Preisumkehr vorhersagen, und wie Python und MetaTrader 5 es uns ermöglichen, diese Volumenbalken in Echtzeit darzustellen.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 18): Einführung in die Quarters-Theorie (III) - Quarters Board
In diesem Artikel erweitern wir das ursprüngliche Quarters-Skript durch die Einführung des Quarters-Boards, einem Werkzeug, mit dem Sie direkt im Chart zwischen den Viertelstufen umschalten können, ohne den Code erneut aufrufen zu müssen. Sie können ganz einfach bestimmte Levels aktivieren oder deaktivieren, und der EA bietet auch Kommentare zur Trendrichtung, damit Sie Marktbewegungen besser verstehen können.
Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators
In diesem Artikel werden wir uns ansehen, was mit ein wenig Code-Verfeinerung erreicht werden kann. Diese Verfeinerung zielt darauf ab, unseren Code zu vereinfachen, mehr Gebrauch von MQL5-Bibliotheksaufrufen zu machen und ihn vor allem viel stabiler, sicherer und einfacher in anderen Projekten zu verwenden, die wir in Zukunft entwickeln werden.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne
Gaußsche Prozesskerne sind die Kovarianzfunktion der Normalverteilung, die bei der Vorhersage eine Rolle spielen können. Wir untersuchen diesen einzigartigen Algorithmus in einer nutzerdefinierten Signalklasse von MQL5, um zu sehen, ob er als erstklassiges Einstiegs- und Ausstiegssignal verwendet werden kann.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel
Lineare Kernel sind die einfachste Matrix ihrer Art, die beim maschinellen Lernen für lineare Regression und Support Vector Machines verwendet wird. Der Matérn-Kernel hingegen ist eine vielseitigere Version der Radialbasisfunktion, die wir in einem früheren Artikel besprochen haben, und er eignet sich für die Abbildung von Funktionen, die nicht so glatt sind, wie es die RBF annehmen würde. Wir erstellen eine nutzerdefinierte Signalklasse, die beide Kernel für die Vorhersage von Long- und Short-Bedingungen verwendet.
Integration von MQL5 mit Datenverarbeitungspaketen (Teil 3): Verbesserte Datenvisualisierung
In diesem Artikel werden wir eine erweiterte Datenvisualisierung durchführen, indem wir über einfache Charts hinausgehen und Funktionen wie Interaktivität, geschichtete Daten und dynamische Elemente einbeziehen, die es Händlern ermöglichen, Trends, Muster und Korrelationen effektiver zu untersuchen.
Nichtlineare Regressionsmodelle an der Börse
Nichtlineare Regressionsmodelle an der Börse: Ist es möglich, die Finanzmärkte vorherzusagen? Betrachten wir die Erstellung eines Modells für die Vorhersage der Preise für EURUSD, und machen zwei Roboter auf der Grundlage - in Python und MQL5.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik
Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.
MQL5 Handels-Toolkit (Teil 4): Entwicklung einer EX5-Bibliothek zur Verwaltung der Handelsgeschichte
Lernen Sie, wie Sie geschlossene Positionen, Aufträge und Deals mit MQL5 abrufen, verarbeiten, klassifizieren, sortieren, analysieren und verwalten können, indem Sie in einer detaillierten Schritt-für-Schritt-Anleitung eine umfangreiche History Management EX5 Library erstellen.
Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)
In diesem Artikel werden wir den Mauszeiger ändern, um die Interaktion mit dem Kontrollindikator zu ermöglichen und einen zuverlässigen und stabilen Betrieb zu gewährleisten.
Entwicklung eines Replay-Systems (Teil 75): Neuer Chart-Handel (II)
In diesem Artikel geht es um die Klasse C_ChartFloatingRAD. Das ist es, was Chart Trade ausmacht. Doch damit ist die Erklärung noch nicht zu Ende. Wir werden sie im nächsten Artikel vervollständigen, da der Inhalt dieses Artikels recht umfangreich ist und ein tiefes Verständnis erfordert. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.