Artikel über Datenanalyse und Statistik in MQL5

icon

Artikel über mathematische Modelle und die Gesetze der Wahrscheinlichkeit können für viele Börsenhändler interessant sein. Denn Mathematik liegt technischer Indikatoren zugrunde, und Kenntnisse in Statistik braucht man, um die Ergebnisse des Handels zu analysieren und Strategien zu entwickeln.

Lesen Sie über die Fuzzylogik, digitale Filter, Marktprofil, Kohonenkarten, neuronales Gas und andere Werkzeuge, die man für den Handel verwenden kann.

Neuer Artikel
letzte | beste
preview
Das Preisbewegungsmodell und seine wichtigsten Aspekte. (Teil 3): Berechnung der optimalen Parameter des Börsenhandels

Das Preisbewegungsmodell und seine wichtigsten Aspekte. (Teil 3): Berechnung der optimalen Parameter des Börsenhandels

Im Rahmen des vom Autor entwickelten technischen Ansatzes, der auf der Wahrscheinlichkeitstheorie basiert, werden die Bedingungen für die Eröffnung einer profitablen Position gefunden und die optimalen (gewinnmaximierenden) Take-Profit- und Stop-Loss-Werte berechnet.
Wer ist wer in der MQL5.community?
Wer ist wer in der MQL5.community?

Wer ist wer in der MQL5.community?

Die Webseite MQL5.com vergisst nichts und niemanden! Wie viele Abschlüsse legendär geworden sind, welcher Beliebtheit sich die einzelnen Artikel erfreuen, und wie oft die in der Codedatenbank gespeicherten Programme heruntergeladen wurden, all das ist nur ein kleiner Teil dessen, was MQL5.com nicht vergisst. In den Profilen werden die Errungenschaften jedes Einzelnen aufbewahrt, aber wie sieht das Gesamtbild aus? Dieser Beitrag soll eine Gesamtübersicht über die Leistungen aller Mitglieder der MQL5.community zeigen.
Preise in der DoEasy-Bibliothek (Teil 60): Listen von Serien mit Symbol-Tickdaten
Preise in der DoEasy-Bibliothek (Teil 60): Listen von Serien mit Symbol-Tickdaten

Preise in der DoEasy-Bibliothek (Teil 60): Listen von Serien mit Symbol-Tickdaten

In diesem Artikel werde ich eine Liste zur Speicherung von Tickdaten eines einzelnen Symbols erstellen und deren Erstellung und Abruf der benötigten Daten in einem EA überprüfen. Tickdatenlisten, die für jedes verwendete Symbol individuell sind, werden weiterhin eine Kollektion von Tickdaten darstellen.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 05): Hinzufügen einer Vorschau

Entwicklung eines Replay-Systems — Marktsimulation (Teil 05): Hinzufügen einer Vorschau

Es ist uns gelungen, einen Weg zu finden, das Replay-System (Marktwiederholungssystem) auf realistische und zugängliche Weise umzusetzen. Lassen Sie uns nun unser Projekt fortsetzen und Daten hinzufügen, um das Wiedergabeverhalten zu verbessern.
preview
Neuronale Netze leicht gemacht (Teil 26): Reinforcement-Learning

Neuronale Netze leicht gemacht (Teil 26): Reinforcement-Learning

Wir untersuchen weiterhin Methoden des Reinforcement-Learnings. Mit diesem Artikel beginnen wir ein weiteres großes Thema, das Reinforcement-Learning. Dieser Ansatz ermöglicht es den Modellen, bestimmte Strategien zur Lösung der Probleme zu entwickeln. Es ist zu erwarten, dass diese Eigenschaft des Reinforcement-Learnings (Lernen durch Verstärkung) neue Horizonte für die Entwicklung von Handelsstrategien eröffnen wird.
preview
Datenkennzeichnung für Zeitreihenanalyse (Teil 1):Erstellen eines Datensatzes mit Trendmarkierungen durch den EA auf einem Chart

Datenkennzeichnung für Zeitreihenanalyse (Teil 1):Erstellen eines Datensatzes mit Trendmarkierungen durch den EA auf einem Chart

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
preview
Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)

Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)

Der Artikel befasst sich mit einem interessanten, von der unbelebten Natur abgeleiteten Algorithmus - intelligente Wassertropfen (IWD), die den Prozess der Flussbettbildung simulieren. Die Ideen dieses Algorithmus ermöglichten es, den bisherigen Spitzenreiter der Bewertung - SDS - deutlich zu verbessern. Der neue Führende (modifizierter SDSm) befindet sich wie üblich im Anhang.
Preise in der DoEasy-Bibliothek (Teil 61): Kollektion der Tickserien eines Symbols
Preise in der DoEasy-Bibliothek (Teil 61): Kollektion der Tickserien eines Symbols

Preise in der DoEasy-Bibliothek (Teil 61): Kollektion der Tickserien eines Symbols

Da ein Programm bei seiner Arbeit verschiedene Symbole verwenden kann, sollte für jedes dieser Symbole eine eigene Liste erstellt werden. In diesem Artikel werde ich solche Listen zu einer Tickdatenkollektion zusammenfassen. In der Tat wird dies eine reguläre Liste sein, die auf der Klasse des dynamischen Arrays von Zeigern auf Instanzen der Klasse CObject und ihrer Nachkommen der Standardbibliothek basiert.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 55): Die Kollektionsklasse der Indikatoren

Zeitreihen in der Bibliothek DoEasy (Teil 55): Die Kollektionsklasse der Indikatoren

Der Artikel setzt die Entwicklung von Objektklassen für die Indikatoren und deren Kollektionen fort. Für jedes Indikatorobjekt erstellen wir seine Beschreibung und die richtige Kollektionsklasse für die fehlerfreie Speicherung und das Abrufen von Indikatorobjekten aus der Kollektionsliste.
preview
Das Preisbewegungsmodell und seine wichtigsten Bestimmungen (Teil 1): Die einfachste Modellversion und ihre Anwendungen

Das Preisbewegungsmodell und seine wichtigsten Bestimmungen (Teil 1): Die einfachste Modellversion und ihre Anwendungen

Der Artikel liefert die Grundlagen für eine mathematisch rigorose Theorie der Preisbewegungen und des Funktionierens des Marktes. Bis heute gibt es keine mathematisch strenge Theorie der Preisbewegung. Stattdessen haben wir es mit erfahrungsbasierten Annahmen zu tun, die besagen, dass sich der Preis nach einem bestimmten Muster in eine bestimmte Richtung bewegt. Natürlich wurden diese Annahmen weder durch Statistiken noch durch die Theorie gestützt.
Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks
Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks

Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks

Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren Tick angekommen sind.
Berg- oder Eisbergdiagramme
Berg- oder Eisbergdiagramme

Berg- oder Eisbergdiagramme

Was halten Sie von der Idee, der MetaTrader 5-Plattform einen neuen Chart-Typ hinzuzufügen? Einige Leute sagen, dass es an einigen Dingen mangelt, die andere Plattformen bieten. Aber die Wahrheit ist, dass MetaTrader 5 eine sehr praktische Plattform ist, da sie Ihnen Dinge ermöglicht, die auf vielen anderen Plattformen nicht (oder zumindest nicht ohne weiteres) möglich sind.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 53): Abstrakte Basisklasse der Indikatoren

Zeitreihen in der Bibliothek DoEasy (Teil 53): Abstrakte Basisklasse der Indikatoren

Der Artikel beschäftigt sich mit dem Erstellen eines abstrakten Indikators, der im Weiteren als Basisklasse für die Erstellung von Objekten der Standard- und nutzerdefinierten Indikatoren der Bibliothek verwendet wird.
preview
Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA

Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA

In diesem Artikel wird die klassische Rasterstrategie untersucht, ihre Automatisierung mit einem Expert Advisor in MQL5 detailliert beschrieben und die ersten Backtest-Ergebnisse analysiert. Wir haben die Notwendigkeit einer hohen Haltekapazität für die Strategie hervorgehoben und Pläne für die Optimierung von Schlüsselparametern wie Abstand, TakeProfit und Losgrößen in zukünftigen Ausgaben skizziert. Die Reihe zielt darauf ab, die Effizienz der Handelsstrategien und die Anpassungsfähigkeit an unterschiedliche Marktbedingungen zu verbessern.
Zeitreihen in der Bibliothek DoEasy (Teil 44): Kollektionsklasse der Objekte von Indikatorpuffern
Zeitreihen in der Bibliothek DoEasy (Teil 44): Kollektionsklasse der Objekte von Indikatorpuffern

Zeitreihen in der Bibliothek DoEasy (Teil 44): Kollektionsklasse der Objekte von Indikatorpuffern

Der Artikel befasst sich mit der Erstellung einer Kollektionsklasse der Objekte von Indikatorpuffern. Ich werde die Fähigkeit testen, eine beliebige Anzahl von Puffern für Indikatoren zu erstellen und mit ihnen zu arbeiten (die maximale Anzahl von Indikatorpuffern, die in MQL erstellt werden können, beträgt 512).
Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten
Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten

Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten

In diesem Artikel werde ich die Funktionalität für die Verfolgung einiger Ereignisse von Chartobjekten erstellen — Hinzufügen/Entfernen von Symbolcharts und Chart-Unterfenstern, sowie Hinzufügen/Entfernen/Ändern von Indikatoren in Chart-Fenstern.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 16): Zugang zu Daten im Internet (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 16): Zugang zu Daten im Internet (II)

Wie man Daten aus dem Web in einen Expert Advisor überträgt, ist nicht so offensichtlich. Das ist gar nicht so einfach, wenn man nicht alle Möglichkeiten des MetaTrader 5 kennt.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)

Wie wäre es, ein System zu schaffen, das es uns ermöglicht, den Markt zu studieren, wenn er geschlossen ist, oder sogar Marktsituationen zu simulieren? Wir beginnen hier eine neue Artikelserie, in der wir uns mit diesem Thema beschäftigen werden.
preview
Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Eines der Hauptprobleme beim Verstärkungslernen ist die Erkundung der Umgebung. Zuvor haben wir bereits die Forschungsmethode auf der Grundlage der intrinsischen Neugier kennengelernt. Heute schlage ich vor, einen anderen Algorithmus zu betrachten: Erkundung bei Unstimmigkeit.
preview
Die diskrete Hartley-Transformation

Die diskrete Hartley-Transformation

In diesem Artikel werden wir eine der Methoden der Spektralanalyse und Signalverarbeitung betrachten - die diskrete Hartley-Transformation. Es ermöglicht die Filterung von Signalen, die Analyse ihres Spektrums und vieles mehr. Die Möglichkeiten der DHT stehen denen der diskreten Fourier-Transformation in nichts nach. Im Gegensatz zur DFT werden bei der DHT jedoch nur reelle Zahlen verwendet, was die Umsetzung in der Praxis erleichtert, und die Ergebnisse der Anwendung sind anschaulicher.
preview
Datenwissenschaft und maschinelles Lernen (Teil 11): Naïve Bayes, Wahrscheinlichkeitsrechnung im Handel

Datenwissenschaft und maschinelles Lernen (Teil 11): Naïve Bayes, Wahrscheinlichkeitsrechnung im Handel

Der Handel mit Wahrscheinlichkeiten ist wie ein Drahtseilakt - er erfordert Präzision, Ausgewogenheit und ein ausgeprägtes Risikobewusstsein. In der Welt des Handels ist die Wahrscheinlichkeit alles. Das ist der Unterschied zwischen Erfolg und Misserfolg, Gewinn und Verlust. Indem sie sich die Macht der Wahrscheinlichkeit zunutze machen, können Händler fundierte Entscheidungen treffen, Risiken effektiv verwalten und ihre finanziellen Ziele erreichen. Ob Sie nun ein erfahrener Anleger oder ein Anfänger sind, das Verständnis der Wahrscheinlichkeit ist der Schlüssel zur Entfaltung Ihres Handelspotenzials. In diesem Artikel werden wir die aufregende Welt des Handels mit Wahrscheinlichkeiten erkunden und Ihnen zeigen, wie Sie Ihr Handelsspiel auf die nächste Stufe heben können.
preview
Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
preview
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
preview
Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität

Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität

In diesem Teil setzen wir die Diskussion über die Modelle der Künstlichen Intelligenz fort. Wir untersuchen vor allem Algorithmen für unüberwachtes Lernen. Wir haben bereits einen der Clustering-Algorithmen besprochen. In diesem Artikel stelle ich eine Variante zur Lösung von Problemen im Zusammenhang mit der Dimensionsreduktion vor.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Das ursprüngliche Ziel dieses Artikels ist es nicht, alle Möglichkeiten des Forex-Handels abzudecken, sondern das System so anzupassen, dass Sie zumindest ein Replay des Marktes durchführen können. Wir lassen die Simulation noch einen Moment auf sich warten. Wenn wir jedoch keine Ticks, sondern nur Balken haben, können wir mit ein wenig Aufwand mögliche Abschlüsse simulieren, die auf dem Forex-Markt passieren könnten. Dies wird der Fall sein, bis wir uns mit der Anpassung des Simulators befassen. Der Versuch, mit Forex-Daten innerhalb des Systems zu arbeiten, ohne sie zu verändern, führt zu einer Reihe von Fehlern.
preview
Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).
preview
Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt. Mit ihrer Hilfe wird es möglich sein, Pufferdaten beliebiger Indikatoren zu sortieren und zu vergleichen, sowie andere ähnliche Daten miteinander zu vergleichen.
preview
Datenwissenschaft und maschinelles Lernen (Teil 07): Polynome Regression

Datenwissenschaft und maschinelles Lernen (Teil 07): Polynome Regression

Im Gegensatz zur linearen Regression ist die polynome Regression ein flexibles Modell, das darauf abzielt, Aufgaben besser zu erfüllen, die das lineare Regressionsmodell nicht bewältigen kann. Lassen Sie uns herausfinden, wie man polynome Modelle in MQL5 erstellt und etwas Positives daraus macht.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Wir müssen unsere Arbeit besser organisieren. Der Code wächst, und wenn dies nicht jetzt geschieht, wird es unmöglich werden. Lasst uns teilen und erobern. MQL5 erlaubt die Verwendung von Klassen, die bei der Umsetzung dieser Aufgabe helfen, aber dafür müssen wir einige Kenntnisse über Klassen haben. Das, was Anfänger am meisten verwirrt, ist wahrscheinlich die Vererbung. In diesem Artikel werden wir uns ansehen, wie man diese Mechanismen auf praktische und einfache Weise nutzen kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

Strategien, die auf mehreren Zeitrahmen (Multi-Timeframe) basieren, können aufgrund der in den Assembly-Klassen verwendeten MQL5-Code-Architektur standardmäßig nicht in den vom Assistenten zusammengestellten Expert Advisors getestet werden. In einer Fallstudie mit dem quadratischen gleitenden Durchschnitt untersuchen wir, wie sich diese Einschränkung bei Strategien, die mehrere Zeitrahmen nutzen wollen, umgehen lässt.
preview
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
preview
Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)

Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)

Rekurrente neuronale Netze (RNNs) zeichnen sich dadurch aus, dass sie Informationen aus der Vergangenheit nutzen, um zukünftige Ereignisse vorherzusagen. Ihre bemerkenswerten Vorhersagefähigkeiten wurden in verschiedenen Bereichen mit großem Erfolg eingesetzt. In diesem Artikel werden wir RNN-Modelle zur Vorhersage von Trends auf dem Devisenmarkt einsetzen und ihr Potenzial zur Verbesserung der Vorhersagegenauigkeit beim Devisenhandel aufzeigen.
preview
MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

Die von Joseph Fourier eingeführte Fourier-Transformation ist ein Mittel zur Zerlegung komplexer Wellen aus Datenpunkten in einfache Teilwellen. Diese Funktion könnte für Händler sehr nützlich sein, und dieser Artikel wirft einen Blick darauf.
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden

Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden

In diesem Artikel wollen wir die Bibliotheksmethoden für die korrekte Anzeige von Mehrsymbol- und Mehrperioden-Standardindikatoren verbessern, wobei die Linien auf dem aktuellen Symbol-Chart mit einer in den Einstellungen festgelegten Verschiebung angezeigt werden. Außerdem sollten wir die Methoden für die Arbeit mit Standardindikatoren in Ordnung bringen und den redundanten Code für den Bibliotheksbereich im endgültigen Indikatorprogramm entferne.
preview
Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA)

Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA)

In diesem Artikel werde ich den Fledermaus-Algorithmus (Bat-Algorithmus, BA) betrachten, der gute Konvergenz bei glatten Funktionen zeigt.
preview
Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zum Abschluss des Themas Arbeit mit Zeitreihen organisieren wir das Speichern, Suchen und Sortieren von Daten, die in Indikatorpuffern gespeichert sind, was die weitere Durchführung der Analyse auf der Grundlage von Werten der Indikatoren ermöglicht, die auf der Basis der Bibliothek in Programmen zu erstellen sind. Das allgemeine Konzept aller Kollektionsklassen der Bibliothek ermöglicht es, die benötigten Daten in der entsprechenden Kollektion leicht zu finden. Dementsprechend wird das Gleiche in der heute erstellten Klasse möglich sein.
preview
Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO)

Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO)

Die erstaunliche Fähigkeit von Unkräutern, unter verschiedensten Bedingungen zu überleben, wurde zur Idee für einen leistungsstarken Optimierungsalgorithmus. IWO (Invasive Weed Optimization) ist einer der besten Algorithmen unter den bisher geprüften.