Artikel über maschinelles Lernen im Handel.

icon

Erstellen von KI-basierten Handelsrobotern: native Integration der Bibliotheken für Python, Matrizen und Vektoren, Mathematik und Statistik und vieles mehr.

Finden Sie heraus, wie Sie maschinelles Lernen im Handel einsetzen können. Neuronen, Perzeptronen, Faltungs- und rekurrente Netze, Vorhersagemodelle – beginnen Sie mit den Grundlagen und arbeiten Sie sich bis zur Entwicklung Ihrer eigenen KI vor. Sie lernen, wie man neuronale Netze für den algorithmischen Handel auf Finanzmärkten trainiert und anwendet.

Neuer Artikel
letzte | beste
preview

Generative Adversarial Networks (GANs) für synthetische Daten in der Finanzmodellierung (Teil 2): Erstellen eines synthetischen Symbols für Tests

In diesem Artikel erstellen wir ein synthetisches Symbol mit Hilfe eines Generative Adversarial Network (GAN), das realistische Finanzdaten generiert, die das Verhalten tatsächlicher Marktinstrumente, wie z. B. EURUSD, nachahmen. Das GAN-Modell lernt Muster und Volatilität aus historischen Marktdaten und erstellt synthetische Preisdaten mit ähnlichen Merkmalen.
preview

Gating-Mechanismen beim Ensemblelernen

In diesem Artikel setzen wir unsere Untersuchung von Ensemblemodellen fort, indem wir das Konzept der Gates erörtern, insbesondere wie sie bei der Kombination von Modellergebnissen nützlich sein können, um entweder die Vorhersagegenauigkeit oder die Modellgeneralisierung zu verbessern.
preview

Integrieren Sie Ihr eigenes LLM in einen EA (Teil 5): Handelsstrategie mit LLMs(IV) entwickeln und testen - Test der Handelsstrategie

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview

Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle (HMM) sind leistungsstarke statistische Instrumente, die durch die Analyse beobachtbarer Kursbewegungen die zugrunde liegenden Marktzustände identifizieren. Im Handel verbessern HMM die Volatilitätsprognose und liefern Informationen für Trendfolgestrategien, indem sie Marktverschiebungen modellieren und antizipieren. In diesem Artikel stellen wir das vollständige Verfahren zur Entwicklung einer Trendfolgestrategie vor, die HMM zur Prognose der Volatilität als Filter einsetzt.
preview

Algorithmus für eine auf künstlichen Ökosystemen basierende Optimierung (AEO)

Der Artikel befasst sich mit einem metaheuristischen AEO-Algorithmus (Artificial Ecosystem-based Optimization), der Interaktionen zwischen Ökosystemkomponenten simuliert, indem er eine anfängliche Lösungspopulation erstellt und adaptive Aktualisierungsstrategien anwendet, und beschreibt im Detail die Phasen des AEO-Betriebs, einschließlich der Verbrauchs- und Zersetzungsphasen, sowie verschiedene Agentenverhaltensstrategien. Der Artikel stellt die Merkmale und Vorteile dieses Algorithmus vor.
preview

Neuronale Netze im Handel: Kontrollierte Segmentierung (letzter Teil)

Wir setzen die im vorigen Artikel begonnene Arbeit am Aufbau des RefMask3D-Frameworks mit MQL5 fort. Dieser Rahmen wurde entwickelt, um multimodale Interaktion und Merkmalsanalyse in einer Punktwolke umfassend zu untersuchen, gefolgt von der Identifizierung des Zielobjekts auf der Grundlage einer in natürlicher Sprache gegebenen Beschreibung.
preview

Neuronale Netze im Handel: Verallgemeinerte 3D-Segmentierung von referenzierten Ausdrücken

Bei der Analyse der Marktsituation unterteilen wir den Markt in einzelne Segmente und ermitteln die wichtigsten Trends. Herkömmliche Analysemethoden konzentrieren sich jedoch oft auf einen Aspekt und schränken so die richtige Wahrnehmung ein. In diesem Artikel lernen wir eine Methode kennen, die die Auswahl mehrerer Objekte ermöglicht, um ein umfassenderes und vielschichtigeres Verständnis der Situation zu gewährleisten.
preview

Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.
preview

Neuronale Netze im Handel: Maskenfreier Ansatz zur Vorhersage von Preisentwicklungen

In diesem Artikel wird die Methode MAFT (Mask-Attention-Free Transformer) und ihre Anwendung im Bereich des Handels diskutiert. Im Gegensatz zu herkömmlichen Transformer, die bei der Verarbeitung von Sequenzen eine Datenmaskierung erfordern, optimiert MAFT den Aufmerksamkeitsprozess, indem es die Maskierung überflüssig macht und so die Rechenleistung erheblich verbessert.
preview

Wirtschaftsprognosen: Erkunden des Potenzials von Python

Wie kann man die Wirtschaftsdaten der Weltbank für Prognosen nutzen? Was passiert, wenn man KI-Modelle und Wirtschaft kombiniert?
preview

Neuronale Netze im Handel: Superpoint Transformer (SPFormer)

In diesem Artikel stellen wir eine Methode zur Segmentierung von 3D-Objekten vor, die auf dem Superpoint Transformer (SPFormer) basiert und bei der die Notwendigkeit einer zwischengeschalteten Datenaggregation entfällt. Dadurch wird der Segmentierungsprozess beschleunigt und die Leistung des Modells verbessert.
preview

African Buffalo Optimierung (ABO)

Der Artikel stellt den Algorithmus der Afrikanische Büffel-Optimierung (ABO) vor, einen metaheuristischen Ansatz, der 2015 auf der Grundlage des einzigartigen Verhaltens dieser Tiere entwickelt wurde. Der Artikel beschreibt im Detail die Phasen der Implementierung des Algorithmus und seine Effizienz bei der Lösung komplexer Probleme, was ihn zu einem wertvollen Werkzeug im Bereich der Optimierung macht.
preview

Neuronale Netze im Handel: Erforschen lokaler Datenstrukturen

Die effektive Identifizierung und Erhaltung der lokalen Struktur von Marktdaten unter verrauschten Bedingungen ist eine wichtige Aufgabe im Handel. Die Verwendung des Mechanismus der Selbstaufmerksamkeit hat vielversprechende Ergebnisse bei der Verarbeitung solcher Daten gezeigt; der klassische Ansatz berücksichtigt jedoch nicht die lokalen Merkmale der zugrunde liegenden Struktur. In diesem Artikel stelle ich einen Algorithmus vor, der diese strukturellen Abhängigkeiten berücksichtigen kann.
preview

Artificial Showering Algorithm (ASHA)

Der Artikel stellt den Künstlichen Duschalgorithmus (ASHA) vor, eine neue metaheuristische Methode, die für die Lösung allgemeiner Optimierungsprobleme entwickelt wurde. Auf der Grundlage der Simulation von Wasserfluss- und Akkumulationsprozessen konstruiert dieser Algorithmus das Konzept eines idealen Feldes, in dem jede Einheit der Ressource (Wasser) aufgerufen ist, eine optimale Lösung zu finden. Wir werden herausfinden, wie ASHA Fließ- und Akkumulationsprinzipien anpasst, um Ressourcen in einem Suchraum effizient zuzuweisen, und seine Implementierung und Testergebnisse sehen.
preview
Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5

Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5

In diesem Artikel werden wir ein Arbitrationssystem erstellen, das in den Augen der Broker legal bleibt, Tausende von synthetischen Preisen auf dem Forex-Markt erstellt, sie analysiert und erfolgreich mit Gewinn handelt.
preview
Atmosphere Clouds Model Optimization (ACMO): Die Praxis

Atmosphere Clouds Model Optimization (ACMO): Die Praxis

In diesem Artikel werden wir uns weiter mit der Implementierung des ACMO-Algorithmus (Atmospheric Cloud Model Optimization) beschäftigen. Wir werden insbesondere zwei Schlüsselaspekte erörtern: die Bewegung von Wolken in Tiefdruckgebiete und die Regensimulation, einschließlich der Initialisierung von Tröpfchen und ihrer Verteilung auf die Wolken. Wir werden uns auch mit anderen Methoden befassen, die eine wichtige Rolle bei der Verwaltung des Zustands von Wolken und der Gewährleistung ihrer Interaktion mit der Umwelt spielen.
preview
Neuronale Netze im Handel: Szenenspezifische Objekterkennung (HyperDet3D)

Neuronale Netze im Handel: Szenenspezifische Objekterkennung (HyperDet3D)

Wir laden Sie ein, einen neuen Ansatz zur Erkennung von Objekten mit Hilfe von Hypernetzwerken kennen zu lernen. Ein Hypernetwork generiert Gewichte für das Hauptmodell, wodurch die Besonderheiten der aktuellen Marktsituation berücksichtigt werden können. Dieser Ansatz ermöglicht es uns, die Vorhersagegenauigkeit zu verbessern, indem wir das Modell an unterschiedliche Handelsbedingungen anpassen.
preview
Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5

Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5

In diesem Artikel wird ein Algorithmus zur Merkmalsauswahl untersucht, der in dem Artikel „Local Feature Selection for Data Classification“ von Narges Armanfard et al. Der Algorithmus ist in Python implementiert, um binäre Klassifizierungsmodelle zu erstellen, die in MetaTrader 5-Anwendungen für Inferenzen integriert werden können.
preview
Neuronale Netze im Handel: Transformer für die Punktwolke (Pointformer)

Neuronale Netze im Handel: Transformer für die Punktwolke (Pointformer)

In diesem Artikel geht es um Algorithmen für die Verwendung von Aufmerksamkeitsmethoden zur Lösung von Problemen bei der Erkennung von Objekten in einer Punktwolke. Die Erkennung von Objekten in Punktwolken ist für viele reale Anwendungen wichtig.
preview
Optimierung mit der bakteriellen Chemotaxis (BCO)

Optimierung mit der bakteriellen Chemotaxis (BCO)

Der Artikel stellt die ursprüngliche Version des Algorithmus zur Optimierung der bakteriellen Chemotaxis (BCO) und seine modifizierte Version vor. Wir werden uns alle Unterschiede genauer ansehen, mit besonderem Augenmerk auf die neue Version von BCOm, die den Mechanismus der bakteriellen Bewegung vereinfacht, die Abhängigkeit von der Positionsgeschichte verringert und einfachere mathematische Verfahren verwendet als die rechenintensive Originalversion. Wir werden auch die Tests durchführen und die Ergebnisse zusammenfassen.
preview
Atmosphere Clouds Model Optimization (ACMO): Theorie

Atmosphere Clouds Model Optimization (ACMO): Theorie

Der Artikel ist dem metaheuristischen Algorithmus der Optimierung des Atmosphärenwolkenmodells (ACMO) gewidmet, der das Verhalten von Wolken simuliert, um Optimierungsprobleme zu lösen. Der Algorithmus nutzt die Prinzipien der Wolkenerzeugung, -bewegung und -ausbreitung und passt sich den „Wetterbedingungen“ im Lösungsraum an. Der Artikel zeigt, wie die meteorologische Simulation des Algorithmus optimale Lösungen in einem komplexen Möglichkeitsraum findet, und beschreibt detailliert die Phasen des ACMO-Betriebs, einschließlich der Vorbereitung des „Himmels“, der Wolkenentstehung, der Wolkenbewegung und der Regenkonzentration.
preview
Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken

Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken

Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.
preview
Archery-Algorithmus (AA)

Archery-Algorithmus (AA)

Der Artikel wirft einen detaillierten Blick auf den vom Bogenschießen inspirierten Optimierungsalgorithmus, wobei der Schwerpunkt auf der Verwendung der Roulette-Methode als Mechanismus zur Auswahl vielversprechender Bereiche für „Pfeile“ liegt. Die Methode ermöglicht es, die Qualität der Lösungen zu bewerten und die vielversprechendsten Positionen für weitere Untersuchungen auszuwählen.
preview
Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)

Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)

Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.
preview
Neuronales Netz in der Praxis: Das erste Neuron

Neuronales Netz in der Praxis: Das erste Neuron

In diesem Artikel beginnen wir damit, etwas Einfaches und Bescheidenes zu bauen: ein Neuron. Wir werden es mit einer sehr kleinen Menge an MQL5-Code programmieren. Das Neuron hat in meinen Tests hervorragend funktioniert. Gehen wir in dieser Artikelserie über neuronale Netze ein wenig zurück, um zu verstehen, wovon ich spreche.
preview
Tabu Search (TS)

Tabu Search (TS)

Der Artikel behandelt den Algorithmus Tabu Search, eine der ersten und bekanntesten metaheuristischen Methoden. Wir werden die Funktionsweise des Algorithmus im Detail durchgehen, beginnend mit der Auswahl einer Anfangslösung und der Untersuchung benachbarter Optionen, wobei der Schwerpunkt auf der Verwendung einer Tabu-Liste liegt. Der Artikel behandelt die wichtigsten Aspekte des Algorithmus und seine Merkmale.
preview
Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)

Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)

Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.
preview
Neuronale Netze im Handel: Hierarchische Vektortransformer (Letzter Teil)

Neuronale Netze im Handel: Hierarchische Vektortransformer (Letzter Teil)

Wir fahren fort mit der Untersuchung der Methode der hierarchischen Vektortransformation. In diesem Artikel werden wir die Konstruktion des Modells abschließen. Wir werden es auch anhand echter historischer Daten trainieren und testen.
preview
Neuronale Netze im Handel: Vereinheitlichtes Trajektoriengenerierungsmodell (UniTraj)

Neuronale Netze im Handel: Vereinheitlichtes Trajektoriengenerierungsmodell (UniTraj)

Das Verständnis des Agentenverhaltens ist in vielen verschiedenen Bereichen wichtig, aber die meisten Methoden konzentrieren sich nur auf eine der Aufgaben (Verstehen, Rauschunterdrückung oder Vorhersage), was ihre Effektivität in realen Szenarien verringert. In diesem Artikel werden wir uns mit einem Modell vertraut machen, das sich an die Lösung verschiedener Probleme anpassen lässt.
preview
Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5

Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5

In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Klassifikatoren in MQL5 vor und erörtern ihre Wirksamkeit in verschiedenen Situationen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 51): Verstärkungslernen mit SAC

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 51): Verstärkungslernen mit SAC

Soft Actor Critic ist ein Reinforcement Learning Algorithmus, der 3 neuronale Netze verwendet. Ein Netzwerk für den Actor und 2 Critic-Netze. Diese maschinellen Lernmodelle werden in einer Master-Slave-Partnerschaft gepaart, in der die Kritiker modelliert werden, um die Prognosegenauigkeit des Akteursnetzwerks zu verbessern. Während wir in dieser Serie auch ONNX vorstellen, untersuchen wir, wie diese Ideen als nutzerdefiniertes Signal eines von einem Assistenten zusammengestellten Expert Advisors getestet werden können.
preview
Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs entwickeln und testen (III) – Adapter-Tuning

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs entwickeln und testen (III) – Adapter-Tuning

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5

Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5

In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Lernmethoden in MQL5 vor und untersuchen ihre Wirksamkeit in verschiedenen Szenarien.
preview
Handelseinblicke über das Volumen: Trendbestätigung

Handelseinblicke über das Volumen: Trendbestätigung

Die Enhanced Trend Confirmation Technique kombiniert Preisaktionen, Volumenanalysen und maschinelles Lernen, um echte Marktbewegungen zu identifizieren. Für die Handelsvalidierung sind sowohl Preisausbrüche als auch Volumensprünge (50 % über dem Durchschnitt) erforderlich, während ein neuronales LSTM-Netzwerk für zusätzliche Bestätigung sorgt. Das System verwendet eine ATR-basierte Positionsgröße und ein dynamisches Risikomanagement, wodurch es an verschiedene Marktbedingungen angepasst werden kann und gleichzeitig falsche Signale herausfiltert.
preview
Integration von MQL5 mit Datenverarbeitungspaketen (Teil 4): Umgang mit großen Daten

Integration von MQL5 mit Datenverarbeitungspaketen (Teil 4): Umgang mit großen Daten

Dieser Teil befasst sich mit fortgeschrittenen Techniken zur Integration von MQL5 mit leistungsstarken Datenverarbeitungswerkzeugen und konzentriert sich auf den effizienten Umgang mit Big Data zur Verbesserung der Handelsanalyse und Entscheidungsfindung.
preview
Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien

Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien

CatBoost ist ein leistungsfähiges, baumbasiertes, maschinelles Lernmodell, das auf die Entscheidungsfindung auf der Grundlage stationärer Merkmale spezialisiert ist. Andere baumbasierte Modelle wie XGBoost und Random Forest haben ähnliche Eigenschaften in Bezug auf ihre Robustheit, ihre Fähigkeit, komplexe Muster zu verarbeiten, und ihre Interpretierbarkeit. Diese Modelle haben ein breites Anwendungsspektrum, das von der Merkmalsanalyse bis zum Risikomanagement reicht. In diesem Artikel werden wir das Verfahren zur Verwendung eines trainierten CatBoost-Modells als Filter für eine klassische Trendfolgestrategie mit gleitendem Durchschnitt erläutern. Dieser Artikel soll einen Einblick in den Strategieentwicklungsprozess geben und gleichzeitig auf die Herausforderungen eingehen, denen man sich auf diesem Weg stellen kann. Ich werde meinen Arbeitsablauf vorstellen, bei dem ich Daten von MetaTrader 5 abrufe, ein maschinelles Lernmodell in Python trainiere und zurück in MetaTrader 5 Expert Advisors integriere. Am Ende dieses Artikels werden wir die Strategie durch statistische Tests validieren und zukünftige Bestrebungen erörtern, die über den derzeitigen Ansatz hinausgehen.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik

Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.
preview
Datenwissenschaft und ML (Teil 32): KI-Modelle auf dem neuesten Stand halten, Online-Lernen

Datenwissenschaft und ML (Teil 32): KI-Modelle auf dem neuesten Stand halten, Online-Lernen

In der sich ständig verändernden Welt des Handels ist die Anpassung an Marktveränderungen nicht nur eine Option, sondern eine Notwendigkeit. Täglich entstehen neue Muster und Trends, die es selbst den fortschrittlichsten Modellen für maschinelles Lernen erschweren, angesichts der sich verändernden Bedingungen effektiv zu bleiben. In diesem Artikel erfahren Sie, wie Sie Ihre Modelle durch ein automatisches Neu-Training relevant halten und auf neue Marktdaten reagieren können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 47): Verstärkungslernen mit Temporaler Differenz

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 47): Verstärkungslernen mit Temporaler Differenz

Temporal Difference ist ein weiterer Algorithmus des Reinforcement Learning, der Q-Werte auf der Grundlage der Differenz zwischen vorhergesagten und tatsächlichen Belohnungen während des Agententrainings aktualisiert. Sie befasst sich speziell mit der Aktualisierung von Q-Werten, ohne sich um die Verknüpfung von Zustand und Aktion zu kümmern. Daher wollen wir sehen, wie wir dies, wie in früheren Artikeln, in einem mit einem Assistenten zusammengestellten Expert Advisor anwenden können.
preview
Handelseinblicke durch Volumen: Mehr als OHLC-Charts

Handelseinblicke durch Volumen: Mehr als OHLC-Charts

Ein algorithmisches Handelssystem, das die Volumenanalyse mit Techniken des maschinellen Lernens, insbesondere neuronalen LSTM-Netzen, kombiniert. Im Gegensatz zu traditionellen Handelsansätzen, die sich in erster Linie auf Preisbewegungen konzentrieren, legt dieses System den Schwerpunkt auf Volumenmuster und deren Ableitungen, um Marktbewegungen vorherzusagen. Die Methodik umfasst drei Hauptkomponenten: Analyse der Volumenderivate (erste und zweite Ableitung), LSTM-Vorhersagen für Volumenmuster und traditionelle technische Indikatoren.