Artikel über Datenanalyse und Statistik in MQL5

icon

Artikel über mathematische Modelle und die Gesetze der Wahrscheinlichkeit können für viele Börsenhändler interessant sein. Denn Mathematik liegt technischer Indikatoren zugrunde, und Kenntnisse in Statistik braucht man, um die Ergebnisse des Handels zu analysieren und Strategien zu entwickeln.

Lesen Sie über die Fuzzylogik, digitale Filter, Marktprofil, Kohonenkarten, neuronales Gas und andere Werkzeuge, die man für den Handel verwenden kann.

Neuer Artikel
letzte | beste
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 17): Zugang zu Daten im Internet (III)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 17): Zugang zu Daten im Internet (III)

In diesem Artikel setzen wir die Überlegungen fort, wie man Daten aus dem Internet beziehen und in einem Expert Advisor verwenden kann. Dieses Mal werden wir ein alternatives System entwickeln.
preview
Entwicklung eines Replay System (Teil 26): Expert Advisor Projekt — die Klasse C_Terminal

Entwicklung eines Replay System (Teil 26): Expert Advisor Projekt — die Klasse C_Terminal

Wir können nun mit der Erstellung eines Expert Advisors für die Verwendung im Wiedergabe-/Simulationssystem beginnen. Wir brauchen jedoch eine Verbesserung und keine zufällige Lösung. Trotzdem sollten wir uns von der anfänglichen Komplexität nicht einschüchtern lassen. Es ist wichtig, irgendwo anzufangen, sonst enden wir damit, dass wir über die Schwierigkeit einer Aufgabe grübeln, ohne überhaupt zu versuchen, sie zu bewältigen. Genau darum geht es beim Programmieren: Hindernisse durch Lernen, Testen und umfassende Forschung zu überwinden.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 10). Die unkonventionelle RBM

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 10). Die unkonventionelle RBM

Restriktive Boltzmann-Maschinen (RBM) sind im Grunde genommen ein zweischichtiges neuronales Netz, das durch Dimensionsreduktion eine unbeaufsichtigte Klassifizierung ermöglicht. Wir nehmen die Grundprinzipien und untersuchen, ob wir durch eine unorthodoxe Umgestaltung und ein entsprechendes Training einen nützlichen Signalfilter erhalten können.
preview
Tipps von einem professionellen Programmierer (Teil III): Protokollierung. Anbindung an das Seq-Log-Sammel- und Analysesystem

Tipps von einem professionellen Programmierer (Teil III): Protokollierung. Anbindung an das Seq-Log-Sammel- und Analysesystem

Implementierung der Klasse Logger zur Vereinheitlichung und Strukturierung von Meldungen, die in das Expertenprotokoll ausgegeben werden. Anschluss an das Seq Logsammel- und Analysesystem. Online-Überwachung der Log-Meldungen.
preview
Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)

Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)

Die meisten Menschen, die programmieren lernen wollen oder davon träumen, haben eigentlich keine Ahnung, was sie da tun. Ihre Tätigkeit besteht darin, dass sie versuchen, Dinge auf eine bestimmte Art und Weise zu schaffen. Bei der Programmierung geht es jedoch nicht darum, geeignete Lösungen zu finden. Auf diese Weise können mehr Probleme als Lösungen entstehen. Hier werden wir etwas Fortgeschritteneres und daher etwas anderes machen.
preview
Entwicklung eines Replay System (Teil 30): Expert Advisor Projekt — Die Klasse C_Mouse (IV)

Entwicklung eines Replay System (Teil 30): Expert Advisor Projekt — Die Klasse C_Mouse (IV)

Heute werden wir eine Technik lernen, die uns in verschiedenen Phasen unseres Berufslebens als Programmierer sehr helfen kann. Oft ist es nicht die Plattform selbst, die begrenzt ist, sondern das Wissen der Person, die über die Grenzen spricht. In diesem Artikel erfahren Sie, dass Sie mit gesundem Menschenverstand und Kreativität die MetaTrader 5-Plattform viel interessanter und vielseitiger gestalten können, ohne auf verrückte Programme oder ähnliches zurückgreifen zu müssen, und einfachen, aber sicheren und zuverlässigen Code erstellen können. Wir werden unsere Kreativität nutzen, um bestehenden Code zu ändern, ohne eine einzige Zeile des Quellcodes zu löschen oder hinzuzufügen.
preview
Kausalschluss in den Problemen bei Zeitreihenklassifizierungen

Kausalschluss in den Problemen bei Zeitreihenklassifizierungen

In diesem Artikel werden wir uns mit der Theorie des Kausalschlusses unter Verwendung von maschinellem Lernen sowie mit der Implementierung des nutzerdefinierten Ansatzes in Python befassen. Kausalschlüsse und kausales Denken haben ihre Wurzeln in der Philosophie und Psychologie und spielen eine wichtige Rolle für unser Verständnis der Realität.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 24): FOREX (V)

Entwicklung eines Replay Systems — Marktsimulation (Teil 24): FOREX (V)

Heute werden wir eine Einschränkung aufheben, die bisher Simulationen auf der Grundlage des letzten Kurses verhindert hat, und einen neuen Einstiegspunkt speziell für diese Art von Simulationen einführen. Der gesamte Funktionsmechanismus wird auf den Prinzipien des Devisenmarktes beruhen. Der Hauptunterschied in diesem Verfahren ist die Trennung von Bid- und Last-Simulationen. Es ist jedoch wichtig zu beachten, dass die Methode zur Randomisierung der Zeit und zur Anpassung an die Klasse C_Replay in beiden Simulationen identisch bleibt. Das ist gut, denn Änderungen in einem Modus führen automatisch zu Verbesserungen im anderen, vor allem wenn es um die Handhabung der Zeit zwischen den Ticks geht.
preview
Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen

Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen

Auf den Devisenmärkten ist es sehr schwierig, den zukünftigen Trend vorherzusagen, ohne eine Vorstellung von der Vergangenheit zu haben. Nur sehr wenige maschinelle Lernmodelle sind in der Lage, Vorhersagen zu treffen, indem sie vergangene Werte berücksichtigen. In diesem Artikel werden wir erörtern, wie wir klassische (Nicht-Zeitreihen-) Modelle der Künstlichen Intelligenz nutzen können, um den Markt zu schlagen
preview
Entwicklung eines Replay System (Teil 29): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Entwicklung eines Replay System (Teil 29): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Nachdem wir die Klasse C_Mouse verbessert haben, können wir uns auf die Erstellung einer Klasse konzentrieren, die einen völlig neuen Rahmen für unsere Analyse schaffen soll. Wir werden weder Vererbung noch Polymorphismus verwenden, um diese neue Klasse zu erstellen. Stattdessen werden wir die Preislinie ändern, oder besser gesagt, neue Objekte hinzufügen. Genau das werden wir in diesem Artikel tun. In der nächsten Ausgabe werden wir uns ansehen, wie man die Analyse ändern kann. All dies geschieht, ohne den Code der Klasse C_Mouse zu ändern. Nun, eigentlich wäre es einfacher, dies durch Vererbung oder Polymorphismus zu erreichen. Es gibt jedoch auch andere Methoden, um das gleiche Ergebnis zu erzielen.
preview
Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)

Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)

Dies ist ein einzigartiger Optimierungsalgorithmus, der von der Evolution des Schildkrötenpanzers inspiriert wurde. Der TSEA-Algorithmus emuliert die allmähliche Bildung keratinisierter Hautbereiche, die optimale Lösungen für ein Problem darstellen. Die besten Lösungen werden „härter“ und befinden sich näher an der Außenfläche, während die weniger erfolgreichen Lösungen „weicher“ bleiben und sich im Inneren befinden. Der Algorithmus verwendet eine Gruppierung der Lösungen nach Qualität und Entfernung, wodurch weniger erfolgreiche Optionen erhalten bleiben und Flexibilität und Anpassungsfähigkeit gewährleistet werden.
preview
Entwicklung eines Replay System (Teil 27): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Entwicklung eines Replay System (Teil 27): Expert Advisor Projekt — Die Klasse C_Mouse (II)

In diesem Artikel werden wir die Klasse C_Mouse implementieren. Es bietet die Möglichkeit, auf höchstem Niveau zu programmieren. Wenn man über High-Level- oder Low-Level-Programmiersprachen spricht, geht es jedoch nicht darum, obszöne Wörter oder Jargon in den Code aufzunehmen. Es ist genau andersherum. Wenn wir von High-Level- oder Low-Level-Programmierung sprechen, meinen wir, wie leicht oder schwer der Code für andere Programmierer zu verstehen ist.
preview
Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5

Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5

Entdecken Sie die Geheimnisse dieser leistungsstarken Dimensionsreduktionstechniken, indem wir ihre Anwendungen in der MQL5-Handelsumgebung analysieren. Vertiefen Sie sich in die Feinheiten der linearen Diskriminanzanalyse (LDA) und der Hauptkomponentenanalyse (PCA) und gewinnen Sie ein tiefes Verständnis für deren Auswirkungen auf die Strategieentwicklung und Marktanalyse,
preview
Datenwissenschaft und ML (Teil 31): CatBoost AI-Modelle für den Handel verwenden

Datenwissenschaft und ML (Teil 31): CatBoost AI-Modelle für den Handel verwenden

CatBoost-KI-Modelle haben in letzter Zeit aufgrund ihrer Vorhersagegenauigkeit, Effizienz und Robustheit gegenüber verstreuten und schwierigen Datensätzen in der Community des maschinellen Lernens stark an Popularität gewonnen. In diesem Artikel werden wir im Detail erörtern, wie man diese Art von Modellen in einem Versuch, den Forex-Markt zu schlagen zu implementieren.
preview
Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

In diesem Artikel werde ich den leistungsstärksten Optimierungsalgorithmus untersuchen und testen - die Harmonie-Suche (HS), inspiriert durch den Prozess der Suche nach der perfekten Klangharmonie. Welcher Algorithmus ist nun der führende in unserer Bewertung?
preview
Nachrichtenhandel leicht gemacht (Teil 1): Erstellen einer Datenbank

Nachrichtenhandel leicht gemacht (Teil 1): Erstellen einer Datenbank

Der Nachrichten basierte Handel kann kompliziert und erdrückend sein. In diesem Artikel werden wir die einzelnen Schritte zur Beschaffung von Nachrichtendaten erläutern. Außerdem werden wir mehr über den MQL5-Wirtschaftskalender und seine Möglichkeiten erfahren.
preview
Kategorientheorie in MQL5 (Teil 21): Natürliche Transformationen mit LDA

Kategorientheorie in MQL5 (Teil 21): Natürliche Transformationen mit LDA

In diesem Artikel, dem 21. in unserer Reihe, geht es weiter mit einem Blick auf natürliche Transformationen und wie sie mit Hilfe der linearen Diskriminanzanalyse umgesetzt werden können. Wir stellen diese Anwendungen in einem Signalklassenformat vor, wie im vorherigen Artikel.
preview
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 07): Dendrogramme

MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 07): Dendrogramme

Die Klassifizierung von Daten zu Analyse- und Prognosezwecken ist ein sehr vielfältiger Bereich des maschinellen Lernens, der eine große Anzahl von Ansätzen und Methoden umfasst. Dieser Beitrag befasst sich mit einem solchen Ansatz, der Agglomerativen Hierarchischen Klassifikation.
preview
Algorithmen zur Optimierung mit Populationen: Algorithmus des Mind Evolutionary Computation (MEC)

Algorithmen zur Optimierung mit Populationen: Algorithmus des Mind Evolutionary Computation (MEC)

Der Artikel befasst sich mit einem Algorithmus aus der MEC-Familie, dem Simple Mind Evolutionary Computation Algorithmus (Simple MEC, SMEC). Der Algorithmus zeichnet sich durch die Schönheit seiner Idee und die Einfachheit seiner Umsetzung aus.
preview
Algorithmen zur Optimierung mit Populationen: Evolutionsstrategien, (μ,λ)-ES und (μ+λ)-ES

Algorithmen zur Optimierung mit Populationen: Evolutionsstrategien, (μ,λ)-ES und (μ+λ)-ES

Der Artikel behandelt eine Gruppe von Optimierungsalgorithmen, die als Evolutionsstrategien (ES) bekannt sind. Sie gehören zu den allerersten Populationsalgorithmen, die evolutionäre Prinzipien für die Suche nach optimalen Lösungen nutzen. Wir werden Änderungen an den herkömmlichen ES-Varianten vornehmen und die Testfunktion und die Prüfstandsmethodik für die Algorithmen überarbeiten.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 25): Vorbereitungen für die nächste Phase

Entwicklung eines Replay Systems — Marktsimulation (Teil 25): Vorbereitungen für die nächste Phase

In diesem Artikel schließen wir die erste Phase der Entwicklung unseres Replay- und Simulationssystems ab. Liebe Leserin, lieber Leser, damit bestätige ich, dass das System ein fortgeschrittenes Niveau erreicht hat und den Weg für die Einführung neuer Funktionen ebnet. Ziel ist es, das System noch weiter zu bereichern und es zu einem leistungsfähigen Instrument für die Forschung und Entwicklung von Marktanalysen zu machen.
preview
Algorithmen zur Optimierung mit Populationen: Shuffled Frog-Leaping Algorithmus (SFL)

Algorithmen zur Optimierung mit Populationen: Shuffled Frog-Leaping Algorithmus (SFL)

Der Artikel enthält eine detaillierte Beschreibung des Shuffled-Frog-Leaping-Algorithmus (SFL) und seiner Fähigkeiten bei der Lösung von Optimierungsproblemen. Der SFL-Algorithmus ist vom Verhalten der Frösche in ihrer natürlichen Umgebung inspiriert und bietet einen neuen Ansatz zur Funktionsoptimierung. Der SFL-Algorithmus ist ein effizientes und flexibles Werkzeug, das eine Vielzahl von Datentypen verarbeiten und optimale Lösungen erzielen kann.
preview
Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 3): Training Ihres eigenen LLM mit CPU

Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 3): Training Ihres eigenen LLM mit CPU

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Integration von Hidden-Markov-Modellen in MetaTrader 5

Integration von Hidden-Markov-Modellen in MetaTrader 5

In diesem Artikel zeigen wir, wie mit Python trainierte Hidden Markov Modelle in MetaTrader 5 Anwendungen integriert werden können. Hidden-Markov-Modelle sind ein leistungsfähiges statistisches Instrument zur Modellierung von Zeitreihendaten, bei denen das modellierte System durch nicht beobachtbare (verborgene) Zustände gekennzeichnet ist. Eine grundlegende Prämisse von HMMs ist, dass die Wahrscheinlichkeit, sich zu einem bestimmten Zeitpunkt in einem bestimmten Zustand zu befinden, vom Zustand des Prozesses im vorherigen Zeitfenster abhängt.
preview
Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)

Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)

In diesem Artikel werde ich den Optimierungsalgorithmus Affen-Algorithmus (MA, Monkey Algorithmus) betrachten. Die Fähigkeit dieser Tiere, schwierige Hindernisse zu überwinden und die unzugänglichsten Baumkronen zu erreichen, bildete die Grundlage für die Idee des MA-Algorithmus.
preview
Chaostheorie im Handel (Teil 2): Tiefer tauchen

Chaostheorie im Handel (Teil 2): Tiefer tauchen

Wir setzen unsere Untersuchung der Chaostheorie auf den Finanzmärkten fort. Dieses Mal werde ich seine Anwendbarkeit auf die Analyse von Währungen und anderen Vermögenswerten untersuchen.
preview
Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 21): FOREX (II)

Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 21): FOREX (II)

Wir werden weiterhin ein System für die Arbeit auf dem FOREX-Markt aufbauen. Um dieses Problem zu lösen, müssen wir zuerst das Laden der Ticks deklarieren, bevor wir die vorherigen Balken laden. Dies löst zwar das Problem, zwingt den Nutzer aber gleichzeitig dazu, sich an eine bestimmte Struktur in der Konfigurationsdatei zu halten, was ich persönlich nicht sehr sinnvoll finde. Der Grund dafür ist, dass wir durch die Entwicklung eines Programms, das für die Analyse und Ausführung der Konfigurationsdatei verantwortlich ist, dem Nutzer die Möglichkeit geben können, die von ihm benötigten Elemente in beliebiger Reihenfolge zu deklarieren.
preview
Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ)

Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ)

Der Artikel beschreibt die Prinzipien, Methoden und Möglichkeiten der Anwendung des elektromagnetischen Algorithmus bei verschiedenen Optimierungsproblemen. Der EM-Algorithmus ist ein effizientes Optimierungswerkzeug, das mit großen Datenmengen und mehrdimensionalen Funktionen arbeiten kann.
preview
Algorithmen zur Optimierung mit Populationen: Mikro-Künstliches Immunsystem (Mikro-AIS)

Algorithmen zur Optimierung mit Populationen: Mikro-Künstliches Immunsystem (Mikro-AIS)

Der Artikel befasst sich mit einer Optimierungsmethode, die auf den Prinzipien des körpereigenen Immunsystems basiert - Mikro-Künstliches Immunsystem (Micro Artificial Immune System, Micro-AIS) - eine Modifikation von AIS. Micro-AIS verwendet ein einfacheres Modell des Immunsystems und einfache Informationsverarbeitungsprozesse des Immunsystems. In dem Artikel werden auch die Vor- und Nachteile von Mikro-AIS im Vergleich zu herkömmlichen AIS erörtert.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 22): FOREX (III)

Entwicklung eines Replay Systems — Marktsimulation (Teil 22): FOREX (III)

Obwohl dies der dritte Artikel zu diesem Thema ist, muss ich für diejenigen, die den Unterschied zwischen dem Aktienmarkt und dem Devisenmarkt noch nicht verstanden haben, erklären: Der große Unterschied besteht darin, dass es auf dem Devisenmarkt keine Informationen über einige Punkte gibt, die im Laufe des Handels tatsächlich aufgetreten sind.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 13): DBSCAN für eine Klasse für Expertensignale

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 13): DBSCAN für eine Klasse für Expertensignale

Density Based Spatial Clustering for Applications with Noise (DBSCAN) ist eine unüberwachte Form der Datengruppierung, die kaum Eingabeparameter benötigt, außer 2, was im Vergleich zu anderen Ansätzen wie K-Means ein Segen ist. Wir gehen der Frage nach, wie dies für das Testen und schließlich den Handel mit den von Wizard zusammengestellten Expert Advisers konstruktiv sein kann
preview
Kategorientheorie in MQL5 (Teil 11): Graphen

Kategorientheorie in MQL5 (Teil 11): Graphen

Dieser Artikel ist die Fortsetzung einer Serie, die sich mit der Implementierung der Kategorientheorie in MQL5 beschäftigt. Hier untersuchen wir, wie die Graphentheorie mit Monoiden und anderen Datenstrukturen bei der Entwicklung einer Ausstiegsstrategie für ein Handelssystem integriert werden kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 29): Fortsetzung zu Lernraten mit MLPs

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 29): Fortsetzung zu Lernraten mit MLPs

Zum Abschluss unserer Betrachtung der Empfindlichkeit der Lernrate für die Leistung von Expert Advisors untersuchen wir in erster Linie die adaptiven Lernraten. Diese Lernraten sollen für jeden Parameter in einer Schicht während des Trainingsprozesses angepasst werden, und so bewerten wir die potenziellen Vorteile gegenüber der erwarteten Leistungsgebühr.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 46): Ichimoku

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 46): Ichimoku

Der Ichimuko Kinko Hyo ist ein bekannter japanischer Indikator, der als Trenderkennungssystem dient. Wir untersuchen dies, wie schon in früheren ähnlichen Artikeln, Muster für Muster und bewerten auch die Strategien und Testberichte mit Hilfe der MQL5-Assistentenbibliothek Klassen und Assembly.
preview
Kategorientheorie in MQL5 (Teil 2)

Kategorientheorie in MQL5 (Teil 2)

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die zu Kommentaren und Diskussionen anregt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung der Händler fördert.
preview
Scheinkorrelationen in Python

Scheinkorrelationen in Python

Scheinkorrelationen treten auf, wenn zwei Zeitreihen rein zufällig ein hohes Maß an Korrelation aufweisen, was zu irreführenden Ergebnissen bei der Regressionsanalyse führt. In solchen Fällen sind die Variablen zwar scheinbar miteinander verbunden, aber die Korrelation ist zufällig und das Modell kann unzuverlässig sein.
preview
Visualisierung der Handelsgeschäfte auf dem Chart (Teil 2): Grafische Anzeige der Daten

Visualisierung der Handelsgeschäfte auf dem Chart (Teil 2): Grafische Anzeige der Daten

In diesem Artikel werden wir von Grund auf ein Skript zur einfachen Visualisierung von Handelsgeschäften (deals) für die nachträgliche Analyse von Handelsentscheidungen schreiben. Alle notwendigen Informationen über ein einzelnes Handelsgeschäft sollen bequem auf dem Chart angezeigt werden, wobei verschiedene Zeitrahmen gezeichnet werden können.
preview
Entwicklung eines Replay Systems (Teil 39): Den Weg ebnen (III)

Entwicklung eines Replay Systems (Teil 39): Den Weg ebnen (III)

Bevor wir zur zweiten Stufe der Entwicklung übergehen, müssen wir einige Ideen überarbeiten. Wissen Sie, wie Sie MQL5 dazu bringen können, das zu tun, was Sie brauchen? Haben Sie jemals versucht, über das hinauszugehen, was in der Dokumentation enthalten ist? Wenn nicht, dann machen Sie sich bereit. Denn wir werden etwas tun, was die meisten Menschen normalerweise nicht tun.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 23): FOREX (IV)

Entwicklung eines Replay Systems — Marktsimulation (Teil 23): FOREX (IV)

Jetzt erfolgt die Erstellung an der gleichen Stelle, an der wir die Ticks in Balken umgewandelt haben. Wenn also bei der Konvertierung etwas schief geht, werden wir den Fehler sofort bemerken. Dies liegt daran, dass derselbe Code, der die 1-Minuten-Balken während des schnellen Vorlaufs auf dem Chart platziert, auch für das Positionierungssystem verwendet wird, um die Balken während der normalen Performance zu platzieren. Mit anderen Worten: Der Code, der für diese Aufgabe zuständig ist, wird nirgendwo anders dupliziert. Auf diese Weise erhalten wir ein viel besseres System sowohl für die Instandhaltung als auch für die Verbesserung.
preview
Implementierung des verallgemeinerten Hurst-Exponenten und des Varianz-Verhältnis-Tests in MQL5

Implementierung des verallgemeinerten Hurst-Exponenten und des Varianz-Verhältnis-Tests in MQL5

In diesem Artikel untersuchen wir, wie der verallgemeinerte Hurst-Exponent und der Varianzverhältnis-Test verwendet werden können, um das Verhalten von Preisreihen in MQL5 zu analysieren.