Vom Neuling zum Experten: Zeitlich gefilterter Handel
Nur weil ständig Ticks eingehen, heißt das nicht, dass jeder Moment eine Gelegenheit zum Handeln ist. Heute befassen wir uns eingehend mit der Kunst des Timings und konzentrieren uns auf die Entwicklung eines Algorithmus zur Zeitisolierung, der Händlern dabei hilft, die für sie günstigsten Marktfenster zu identifizieren und zu handeln. Die Pflege dieser Disziplin ermöglicht es Privatanlegern, sich besser auf das Timing der institutionellen Anleger einzustellen, bei denen Präzision und Geduld oft über den Erfolg entscheiden. Nehmen Sie an dieser Diskussion teil, in der wir die Wissenschaft des Timings und des selektiven Handels mit Hilfe der analytischen Fähigkeiten von MQL5 erkunden.
Vom Neuling zum Experten: Prädiktive Preispfade
Fibonacci-Levels bieten einen praktischen Rahmen, der von den Märkten oft beachtet wird und Preiszonen aufzeigt, in denen Reaktionen wahrscheinlicher sind. In diesem Artikel erstellen wir einen Expert Advisor, der die Logik des Fibonacci-Retracements anwendet, um wahrscheinliche künftige Bewegungen zu antizipieren und Rücksetzer mit schwebenden Aufträgen zu handeln. Erkunden Sie den gesamten Arbeitsablauf – von der Umkehr-Erkennung über die Pegelaufzeichnung und Risikokontrolle bis hin zur Ausführung.
Forex Arbitrage-Handel: Analyse der Bewegungen synthetischer Währungen und ihrer mittleren Umkehrung
In diesem Artikel werden wir die Bewegungen synthetischer Währungen mit Hilfe von Python und MQL5 untersuchen und herausfinden, wie praktikabel Forex-Arbitrage heute ist. Wir werden uns auch mit fertigem Python-Code für die Analyse synthetischer Währungen befassen und mehr Details darüber mitteilen, was synthetische Währungen im Devisenhandel sind.
Entwicklung von Trendhandelsstrategien mit maschinellem Lernen
In dieser Studie wird eine neuartige Methodik für die Entwicklung von Trendfolgestrategien vorgestellt. In diesem Abschnitt wird der Prozess der Annotation von Trainingsdaten und deren Verwendung zum Training von Klassifikatoren beschrieben. Dieser Prozess führt zu voll funktionsfähigen Handelssystemen, die für den MetaTrader 5 entwickelt wurden.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 24): Hinzufügen einer neuen Strategie (II)
In diesem Artikel werden wir die neue Strategie mit dem erstellten automatischen Optimierungssystem verbinden. Schauen wir uns an, welche Änderungen am EA für die Erstellung des Optimierungsprojekts sowie an den EAs der zweiten und dritten Stufe vorgenommen werden müssen.
Implementierung eines Tabellenmodells in MQL5: Anwendung des MVC-Konzepts
In diesem Artikel betrachten wir den Prozess der Entwicklung eines Tabellenmodells in MQL5 unter Verwendung des MVC-Architekturmusters (Model-View-Controller) zur Trennung der Logik, Darstellung und Steuerung der Daten, was strukturierten, flexiblen und skalierbaren Code ermöglicht. Wir betrachten die Implementierung von Klassen zum Aufbau eines Tabellenmodells, einschließlich der Verwendung von verknüpften Listen zur Speicherung von Daten.
Vom Neuling zum Experten: Forex Markt Perioden
Jede Marktperiode hat einen Anfang und ein Ende und schließt jeweils mit einem Preis, der die Stimmung definiert – ähnlich wie bei Kerzen. Anhand dieser Bezugspunkte können wir die vorherrschende Marktstimmung einschätzen und erkennen, ob Auf- oder Abwärtskräfte die Kontrolle haben. In dieser Diskussion machen wir einen wichtigen Schritt nach vorn, indem wir eine neue Funktion innerhalb des Market Periods Synchronizer entwickeln – eine Funktion, die Forex-Marktsitzungen visualisiert, um fundiertere Handelsentscheidungen zu unterstützen. Dieses Tool kann besonders hilfreich sein, um in Echtzeit festzustellen, welche Seite – Bullen oder Bären – die Sitzung dominiert. Erforschen wir dieses Konzept und entdecken wir die Erkenntnisse, die es bietet.
Der Algorithmus Central Force Optimization (CFO)
Der Artikel stellt den von den Gesetzen der Schwerkraft inspirierten Algorithmus Central Force Optimization (CFO) vor. Es wird untersucht, wie die Prinzipien der physikalischen Schwerkraft Optimierungsprobleme lösen können, bei denen „schwerere“ Lösungen weniger erfolgreiche Gegenstücke anziehen.
Algorithmus der erfolgreichen Gastronomen (SRA)
Der Successful Restaurateur Algorithm (SRA) ist eine innovative Optimierungsmethode, die sich an den Prinzipien des Restaurantbetriebs orientiert. Im Gegensatz zu traditionellen Ansätzen werden bei der SRA schwache Lösungen nicht verworfen, sondern durch die Kombination mit Elementen erfolgreicher Lösungen verbessert. Der Algorithmus zeigt konkurrenzfähige Ergebnisse und bietet eine neue Perspektive für das Gleichgewicht zwischen Erkunden und Nutzen bei Optimierungsproblemen.
Analyse aller Preisbewegungsoptionen auf dem IBM-Quantencomputer
Wir werden einen Quantencomputer von IBM einsetzen, um alle Möglichkeiten der Preisentwicklung zu ermitteln. Klingt nach Science Fiction? Willkommen in der Welt des Quantencomputers für den Handel!
Kapitalmanagement im Handel und das Buchhaltungsprogramm des Händlers zu Hause mit einer Datenbank
Wie kann ein Händler sein Kapital verwalten? Wie kann ein Händler und Anleger den Überblick über Ausgaben, Einnahmen, Vermögenswerte und Verbindlichkeiten behalten? Ich werde Ihnen nicht nur eine Buchhaltungssoftware vorstellen, sondern ein Instrument, das zu Ihrem zuverlässigen Finanznavigator in der stürmischen See des Handels werden kann.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 24): Hinzufügen einer neuen Strategie (I)
In diesem Artikel werden wir uns ansehen, wie man eine neue Strategie mit dem von uns erstellten Auto-Optimierungssystem verbindet. Schauen wir uns an, welche Art von EAs wir erstellen müssen und ob es möglich ist, ohne Änderung der EA-Bibliotheksdateien auszukommen oder die notwendigen Änderungen zu minimieren.
Fibonacci am Devisenmarkt (Teil I): Prüfung des Verhältnisses zwischen Preis und Zeit
Wie beobachtet der Markt Fibonacci-basierte Beziehungen? Diese Folge, bei der jede nachfolgende Zahl gleich der Summe der beiden vorhergehenden ist (1, 1, 2, 3, 5, 8, 13, 21...), beschreibt nicht nur das Wachstum der Kaninchenpopulation. Wir werden die pythagoreische Hypothese betrachten, dass alles in der Welt bestimmten Zahlenbeziehungen unterliegt...
Blood inheritance optimization (BIO)
Ich stelle Ihnen meinen neuen Algorithmus zur Populationsoptimierung vor – Blood Inheritance Optimization (BIO), inspiriert durch das menschliche Blutgruppenvererbungssystem. Bei diesem Algorithmus hat jede Lösung ihre eigene „Blutgruppe“, die bestimmt, wie sie sich weiterentwickelt. Wie in der Natur, wo die Blutgruppe eines Kindes nach bestimmten Regeln vererbt wird, erhalten neue Lösungen in BIO ihre Eigenschaften durch ein System von Vererbung und Mutationen.
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 23): Ordnung in den Ablauf automatischer Projektoptimierungsstufe bringen (II)
Unser Ziel ist es, ein System zur automatischen periodischen Optimierung von Handelsstrategien zu schaffen, die in einem endgültigen EA verwendet werden. Im Laufe der Entwicklung wird das System immer komplexer, sodass es von Zeit zu Zeit in seiner Gesamtheit betrachtet werden muss, um Engpässe und suboptimale Lösungen zu ermitteln.
Kreis-Such-Algorithmus (CSA)
Der Artikel stellt einen neuen metaheuristischen Optimierungs-Kreis-Such-Algorithmus (CSA) vor, der auf den geometrischen Eigenschaften eines Kreises basiert. Der Algorithmus nutzt das Prinzip der Bewegung von Punkten entlang von Tangenten, um die optimale Lösung zu finden, und kombiniert die Phasen der globalen Erkundung und der lokalen Ausbeutung.
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 22): Beginn des Übergangs zum Hot-Swapping von Einstellungen
Wenn wir die periodische Optimierung automatisieren wollen, müssen wir über automatische Aktualisierungen der Einstellungen der bereits auf dem Handelskonto laufenden EAs nachdenken. Dies sollte es uns auch ermöglichen, den EA im Strategietester laufen zu lassen und seine Einstellungen in einem einzigen Durchgang zu ändern.
Chaos Game Optimization (CGO)
Der Artikel stellt einen neuen metaheuristischen Algorithmus, Chaos Game Optimization (CGO), vor, der eine einzigartige Fähigkeit zur Aufrechterhaltung einer hohen Effizienz bei hochdimensionalen Problemen aufweist. Im Gegensatz zu den meisten Optimierungsalgorithmen verliert CGO nicht nur nicht an Leistung, sondern steigert sie manchmal sogar, wenn ein Problem skaliert wird, was sein Hauptmerkmal ist.
Biologisches Neuron zur Vorhersage von Finanzzeitreihen
Wir werden ein biologisch korrektes System von Neuronen für die Vorhersage von Zeitreihen aufbauen. Die Einführung einer plasmaähnlichen Umgebung in die Architektur des neuronalen Netzes schafft eine Art „kollektive Intelligenz“, bei der jedes Neuron den Betrieb des Systems nicht nur durch direkte Verbindungen, sondern auch durch weitreichende elektromagnetische Wechselwirkungen beeinflusst. Mal sehen, wie sich das neuronale Gehirnmodellierungssystem auf dem Markt schlagen wird.
Royal-Flush-Optimierung (RFO)
Der ursprüngliche Royal Flush Optimierung-Algorithmus bietet einen neuen Ansatz zur Lösung von Optimierungsproblemen, indem er die klassische binäre Kodierung genetischer Algorithmen durch einen sektorbasierten Ansatz ersetzt, der von den Prinzipien des Pokerspiels inspiriert ist. RFO zeigt, wie die Vereinfachung von Grundprinzipien zu einer effizienten und praktischen Optimierungsmethode führen kann. Der Artikel enthält eine detaillierte Analyse des Algorithmus und der Testergebnisse.
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 21): Vorbereitungen für ein wichtiges Experiment und Optimierung des Codes
Um weitere Fortschritte zu erzielen, wäre es gut zu sehen, ob wir die Ergebnisse verbessern können, indem wir die automatische Optimierung in regelmäßigen Abständen erneut durchführen und einen neuen EA erstellen. Der Stolperstein in vielen Debatten über den Einsatz der Parameteroptimierung ist die Frage, wie lange die erhaltenen Parameter für den Handel in der Zukunft verwendet werden können, während die Rentabilität und der Drawdown auf dem vorgegebenen Niveau bleiben. Und ist das überhaupt möglich?
Dialektische Suche (DA)
Der Artikel stellt den dialektischen Algorithmus (DA) vor, eine neue globale Optimierungsmethode, die vom philosophischen Konzept der Dialektik inspiriert ist. Der Algorithmus macht sich eine einzigartige Aufteilung der Bevölkerung in spekulative und praktische Denker (thinker) zunutze. Tests zeigen eine beeindruckende Leistung von bis zu 98 % bei niedrigdimensionalen Problemen und eine Gesamteffizienz von 57,95 %. Der Artikel erläutert diese Metriken und präsentiert eine detaillierte Beschreibung des Algorithmus sowie die Ergebnisse von Experimenten mit verschiedenen Arten von Funktionen.
Marktsimulation (Teil 06): Übertragen von Informationen von MetaTrader 5 nach Excel
Viele Menschen, insbesondere Nicht-Programmierer, finden es sehr schwierig, Informationen zwischen MetaTrader 5 und anderen Programmen zu übertragen. Ein solches Programm ist Excel. Viele verwenden Excel, um ihre Risikokontrolle zu verwalten und aufrechtzuerhalten. Es ist ein ausgezeichnetes Programm und leicht zu erlernen, auch für diejenigen, die keine VBA-Programmierer sind. Im Folgenden werden wir uns ansehen, wie man eine Verbindung zwischen MetaTrader 5 und Excel herstellt (eine sehr einfache Methode).
Vom Neuling zum Experten: Synchronisieren der Zeitrahmen des Marktes
In dieser Diskussion stellen wir ein Synchronisierungsinstrument der Zeitrahmen von länger zu kürzer vor, das das Problem der Analyse von Marktmustern lösen soll, die sich über höhere Zeitrahmen bilden. Die eingebauten Periodenmarker in MetaTrader 5 sind oft begrenzt, starr und lassen sich nicht ohne weiteres an nicht standardisierte Zeitrahmen anpassen. Unsere Lösung nutzt die MQL5-Sprache, um einen Indikator zu entwickeln, der eine dynamische und visuelle Möglichkeit bietet, Strukturen mit höherem Zeitrahmen in Charts mit niedrigerem Zeitrahmen auszurichten. Dieses Instrument kann für eine detaillierte Marktanalyse sehr wertvoll sein. Um mehr über die Funktionen und die Umsetzung zu erfahren, lade ich Sie ein, sich an der Diskussion zu beteiligen.
Der MQL5 Standard Library Explorer (Teil 2): Verbinden mit Bibliothekskomponenten
Heute machen wir einen wichtigen Schritt, damit jeder Entwickler versteht, wie man Klassenstrukturen liest und schnell Expert Advisors mit der MQL5-Standardbibliothek erstellt. Die Bibliothek ist reichhaltig und ausbaufähig, aber es kann sich anfühlen, als würde man ein komplexes Toolkit ohne Handbuch in die Hand bekommen. Hier wird eine alternative Integrationsroutine vorgestellt und diskutiert – ein prägnanter, wiederholbarer Arbeitsablauf, der zeigt, wie sich Klassen in realen Projekten zuverlässig verbinden lassen.
Vom Neuling zum Experten: Entmystifizierung versteckter Fibonacci-Retracement-Levels
In diesem Artikel untersuchen wir einen datengestützten Ansatz zur Ermittlung und Validierung von nicht standardmäßigen Fibonacci-Retracement-Levels, die von den Märkten möglicherweise respektiert werden. Wir stellen einen kompletten Arbeitsablauf vor, der auf die Implementierung in MQL5 zugeschnitten ist, beginnend mit der Datenerfassung und der Balken- oder Swing-Erkennung, bis hin zum Clustering, statistischen Hypothesentests, Backtesting und der Integration in ein MetaTrader 5 Fibonacci-Tool. Das Ziel ist es, eine reproduzierbare Pipeline zu erstellen, die anekdotische Beobachtungen in statistisch vertretbare Handelssignale umwandelt.
Vom Neuling zum Experten: Backend Operations Monitor mit MQL5
Die Verwendung einer vorgefertigten Lösung im Handel, ohne sich mit der internen Funktionsweise des Systems zu befassen, mag zwar beruhigend klingen, doch ist dies für Entwickler nicht immer der Fall. Irgendwann tritt ein Upgrade, eine Leistungsstörung oder ein unerwarteter Fehler auf, und es ist wichtig, genau zu wissen, woher das Problem kommt, um es schnell zu diagnostizieren und zu beheben. Die heutige Diskussion konzentriert sich auf die Aufdeckung dessen, was normalerweise hinter den Kulissen eines Expert Advisors passiert, und auf die Entwicklung einer nutzerdefinierten Klasse für die Anzeige und Protokollierung von Backend-Prozessen mit MQL5. Dies gibt sowohl Entwicklern als auch Händlern die Möglichkeit, Fehler schnell zu lokalisieren, das Verhalten zu überwachen und auf spezifische Diagnoseinformationen für jeden EA zuzugreifen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 85): Verwendung von Mustern des Stochastik-Oszillators und der FrAMA mit Beta-VAE-Inferenzlernen
Dieser Beitrag schließt an Teil 84 an, in dem wir die Kombination von Stochastik und Fractal Adaptive Moving Average vorgestellt haben. Wir verlagern nun den Schwerpunkt auf das Inferenzlernen, um zu sehen, ob die im letzten Artikel unterlegenen Muster eine Trendwende erfahren könnten. Der Stochastik und der FrAMA sind eine sich ergänzende Paarung von Momentum und Trend. Für unser Inferenzlernen greifen wir auf den Beta-Algorithmus eines Variational Auto Encoders zurück. Außerdem implementieren wir, wie immer, eine nutzerdefinierte Signalklasse, die für die Integration mit dem MQL5-Assistenten entwickelt wurde.
Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 4): Überwindung mehrzeiliger Eingaben, Sicherstellung der Chat-Persistenz und Generierung von Signalen
In diesem Artikel erweitern wir das in ChatGPT integrierte Programm in MQL5, indem wir die Beschränkungen bei mehrzeiligen Eingaben durch eine verbesserte Textdarstellung überwinden, eine Seitenleiste für die Navigation im persistenten Chatspeicher mit AES256-Verschlüsselung und ZIP-Komprimierung einführen und erste Handelssignale durch die Integration von Chart-Daten erzeugen.
Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 3): Upgrade auf eine scrollbare, auf den Einzelchat ausgerichtete Nutzeroberfläche
In diesem Artikel aktualisieren wir das in ChatGPT integrierte Programm in MQL5 zu einer scrollbaren, auf einen einzelnen Chat ausgerichteten Nutzeroberfläche und verbessern die Anzeige des Gesprächsverlaufs mit Zeitstempeln und dynamischem Scrollen. Das System basiert auf JSON-Parsing, um Multi-Turn-Meldungen zu verwalten, und unterstützt anpassbare Modi der Schieberegler und Hover-Effekte für eine verbesserte Nutzerinteraktion.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 82): Verwendung von TRIX- und WPR-Mustern mit DQN-Verstärkungslernen
Im letzten Artikel haben wir die Paarung von Ichimoku und ADX im Rahmen des Inferenzlernens untersucht. In diesem Beitrag greifen wir das Verstärkungslernen in Verbindung mit einem Indikatorpaar auf, das wir zuletzt in „Teil 68“ betrachtet haben. Der TRIX und Williams Percent Range. Unser Algorithmus für diese Überprüfung wird die Quantilregression DQN sein. Wie üblich stellen wir dies als nutzerdefinierte Signalklasse vor, die für die Implementierung mit dem MQL5-Assistenten entwickelt wurde.
Schnellhandel meistern: Überwindung der Umsetzungslähmung
Der Indikator UT BOT ATR Trailing ist ein persönlicher und anpassbarer Indikator, der sehr effektiv für Händler ist, die gerne schnelle Entscheidungen treffen und Geld aus Preisunterschieden machen, die als kurzfristiger Handel bezeichnet werden (Scalper), und sich auch als wichtig und sehr effektiv für langfristige Händler (positionelle Händler) erweist.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 81): Verwendung von Ichimoku-Mustern und des ADX-Wilder mit Beta-VAE-Inferenzlernen
Dieser Beitrag schließt an Teil 80 an, in dem wir die Paarung von Ichimoku und ADX im Rahmen eines Reinforcement Learning untersucht haben. Wir wenden uns nun dem Inferenzlernen zu. Ichimoku und ADX ergänzen sich, wie bereits erwähnt, jedoch werden wir die Schlussfolgerungen des letzten Artikels in Bezug auf die Verwendung von Pipelines wieder aufgreifen. Für unser Inferenzlernen verwenden wir den Beta-Algorithmus eines Variational Auto Encoders. Wir bleiben auch bei der Implementierung einer nutzerdefinierten Signalklasse für die Integration mit dem MQL5-Assistenten.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 80): Verwendung von Ichimoku-Muster und des ADX-Wilder mit TD3 Reinforcement Learning
Dieser Artikel schließt an Teil 74 an, in dem wir die Paarung von Ichimoku und ADX im Rahmen des überwachten Lernens untersuchten, und verlagert den Schwerpunkt auf das Bestärkende Lernen. Ichimoku und ADX bilden eine komplementäre Kombination von Unterstützungs-/Widerstandskartierung und Trendstärkemessung. In dieser Folge wird gezeigt, wie der Twin Delayed Deep Deterministic Policy Gradient (TD3) Algorithmus mit diesem Indikatorensatz verwendet werden kann. Wie bei früheren Teilen der Serie erfolgt die Implementierung in einer nutzerdefinierten Signalklasse, die für die Integration mit dem MQL5-Assistenten entwickelt wurde, was eine problemlose Zusammenstellung von Expert Advisors ermöglicht.
Vereinfachen von Datenbanken in MQL5 (Teil 2): Verwendung von Metaprogrammierung zur Erstellung von Entitäten
Wir haben die fortgeschrittene Verwendung von #define für die Metaprogrammierung in MQL5 erforscht, indem wir Entitäten erstellt haben, die Tabellen und Spaltenmetadaten (Typ, Primärschlüssel, Autoinkrement, Nullbarkeit usw.) darstellen. Wir haben diese Definitionen in TickORM.mqh zentralisiert, wodurch die Generierung von Metadatenklassen automatisiert und der Weg für eine effiziente Datenmanipulation durch den ORM geebnet wird, ohne dass SQL manuell geschrieben werden muss.
Pipelines in MQL5
In diesem Beitrag befassen wir uns mit einem wichtigen Schritt der Datenaufbereitung für das maschinelle Lernen, der zunehmend an Bedeutung gewinnt. Pipelines für die Datenvorverarbeitung. Dabei handelt es sich im Wesentlichen um eine rationalisierte Abfolge von Datenumwandlungsschritten, mit denen Rohdaten aufbereitet werden, bevor sie in ein Modell eingespeist werden. So uninteressant dies für den Laien auch erscheinen mag, diese „Datenstandardisierung“ spart nicht nur Trainingszeit und Ausführungskosten, sondern trägt auch zu einer besseren Generalisierung bei. In diesem Artikel konzentrieren wir uns auf einige SCIKIT-LEARN Vorverarbeitungsfunktionen, und während wir den MQL5-Assistenten nicht ausnutzen, werden wir in späteren Artikeln darauf zurückkommen.
Aufbau von KI-gesteuerten Handelssystemen in MQL5 (Teil 1): Implementierung der JSON-Verarbeitung für KI-APIs
In diesem Artikel entwickeln wir ein System des JSON-Parsing in MQL5, um den Datenaustausch für die KI-API-Integration zu handhaben, wobei wir uns auf eine JSON-Klasse zur Verarbeitung von JSON-Strukturen konzentrieren. Wir implementieren Methoden zur Serialisierung und Deserialisierung von JSON-Daten, die verschiedene Datentypen wie Strings, Zahlen und Objekte unterstützen. Dies ist für die Kommunikation mit KI-Diensten wie ChatGPT unerlässlich und ermöglicht zukünftige KI-gesteuerte Handelssysteme, indem es eine genaue Datenverarbeitung und -manipulation gewährleistet.
Aufbau von KI-gesteuerten Handelssystemen in MQL5 (Teil 2): Entwicklung eines ChatGPT-integrierten Programms mit Nutzeroberfläche
In diesem Artikel entwickeln wir ein in ChatGPT integriertes Programm in MQL5 mit einer Nutzeroberfläche, das das JSON-Parsing-Framework aus Teil 1 nutzt, um Prompts an die API von OpenAI zu senden und die Antworten auf einem MetaTrader 5-Chart anzuzeigen. Wir implementieren ein Dashboard mit einem Eingabefeld, einer Übermittlungsschaltfläche und einer Antwortanzeige, wobei wir die API-Kommunikation und den Textumbruch für die Nutzerinteraktion übernehmen.
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (XI) – Korrelation im Nachrichtenhandel
In diesem Beitrag werden wir untersuchen, wie das Konzept der Finanzkorrelation angewendet werden kann, um die Entscheidungseffizienz beim Handel mit mehreren Symbolen während der Ankündigung wichtiger wirtschaftlicher Ereignisse zu verbessern. Der Schwerpunkt liegt dabei auf der Bewältigung des erhöhten Risikos, das durch die erhöhte Volatilität bei der Veröffentlichung von Nachrichten entsteht.
Der MQL5 Standard Library Explorer (Teil 1): Einführung in CTrade, CiMA, und CiATR
Die MQL5-Standardbibliothek spielt eine wichtige Rolle bei der Entwicklung von Handelsalgorithmen für MetaTrader 5. In dieser Diskussionsreihe wollen wir seine Anwendung beherrschen, um die Erstellung effizienter Handelswerkzeuge für MetaTrader 5 zu vereinfachen. Zu diesen Tools gehören nutzerdefinierte Expert Advisors, Indikatoren und andere Hilfsmittel. Wir beginnen heute mit der Entwicklung eines trendfolgenden Expert Advisors unter Verwendung der Klassen CTrade, CiMA und CiATR. Dies ist ein besonders wichtiges Thema für alle – egal, ob Sie Anfänger oder erfahrener Entwickler sind. Nehmen Sie an dieser Diskussion teil und erfahren Sie mehr.