
Datenwissenschaft und ML (Teil 45): Forex Zeitreihenprognosen mit dem Modell PROPHET von Facebook
Das von Facebook entwickelte Modell Prophet ist ein robustes Zeitreihen-Prognoseinstrument, das Trends, Saisonalität und Feiertagseffekte mit minimalem manuellem Aufwand erfassen kann. Sie wurde in großem Umfang für die Bedarfsprognose und die Unternehmensplanung eingesetzt. In diesem Artikel untersuchen wir die Effektivität von Prophet bei der Vorhersage der Volatilität von Deviseninstrumenten und zeigen, wie es über die traditionellen Geschäftsanwendungen hinaus eingesetzt werden kann.

Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (II)
Heute machen wir einen weiteren Schritt nach vorn, indem wir eine externe Nachrichten-API als Quelle für Schlagzeilen in unseren News Headline EA integrieren. In dieser Phase werden wir verschiedene Nachrichtenquellen – sowohl etablierte als auch neue – untersuchen und lernen, wie wir effektiv auf ihre APIs zugreifen können. Wir werden auch Methoden zum Parsen der abgerufenen Daten in ein Format behandeln, das für die Anzeige in unserem Expert Advisor optimiert ist. Nehmen Sie an der Diskussion teil und erfahren Sie mehr über die Vorteile des Zugriffs auf Schlagzeilen und den Wirtschaftskalender direkt auf dem Chart, und das alles über eine kompakte, nicht störende Schnittstelle.

Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (I)
Die Zugänglichkeit von Nachrichten ist ein entscheidender Faktor beim Handel mit dem MetaTrader 5-Terminal. Obwohl zahlreiche Nachrichten-APIs verfügbar sind, stehen viele Händler vor der Herausforderung, auf diese zuzugreifen und sie effektiv in ihre Handelsumgebung zu integrieren. In dieser Diskussion wollen wir eine schlanke Lösung entwickeln, die Nachrichten direkt auf die Chart bringt – dort, wo sie am meisten gebraucht werden. Zu diesem Zweck wird ein Expert Advisor für News Headline erstellt, der Echtzeit-Nachrichten-Updates aus API-Quellen überwacht und anzeigt.

Umstellung auf MQL5 Algo Forge (Teil 3): Verwendung externer Repositories für die eigenen Projekte
Lassen Sie uns untersuchen, wie Sie externen Code aus einem beliebigen Repository im MQL5 Algo Forge Speicher in Ihr eigenes Projekt integrieren können. In diesem Artikel wenden wir uns endlich dieser vielversprechenden, aber auch komplexeren Aufgabe zu: wie man Bibliotheken aus Drittanbieter-Repositories innerhalb von MQL5 Algo Forge praktisch verbindet und verwendet.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XII): Integration eines Rechners für Forex-Werte
Die genaue Berechnung der wichtigsten Handelswerte ist ein unverzichtbarer Bestandteil des Arbeitsablaufs eines jeden Händlers. In diesem Artikel werden wir die Integration eines leistungsstarken Dienstprogramms - des Forex-Rechners - in das Handelsverwaltungs-Panel besprechen, wodurch die Funktionalität unseres Multi-Panel-Handelsverwaltungssystems noch erweitert wird. Die effiziente Bestimmung von Risiko, Positionsgröße und potenziellem Gewinn ist bei der Platzierung von Handelsgeschäften von entscheidender Bedeutung, und diese neue Funktion wurde entwickelt, um diesen Prozess innerhalb des Panels schneller und intuitiver zu gestalten. Erforschen Sie mit uns die praktische Anwendung von MQL5 beim Aufbau fortgeschrittener Handelspanels.

MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 70): Verwendung der Muster von SAR und RVI mit einem Exponential-Kernel-Netzwerk
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar SAR und RVI vorstellten, und überlegen, wie dieses Indikatorpaar durch maschinelles Lernen erweitert werden kann. SAR und RVI sind eine komplementäre Paarung von Trend und Momentum. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Exponential-Kernel bei der Dimensionierung seiner Kerne und Kanäle einsetzt. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.

Umstellung auf MQL5 Algo Forge (Teil 2): Arbeiten mit mehreren Repositorys
In diesem Artikel betrachten wir einen der möglichen Ansätze zur Organisation der Speicherung des Quellcodes eines Projekts in einem öffentlichen Repository. Wir werden den Code auf verschiedene Zweige verteilen, um klare und bequeme Regeln für die Projektentwicklung festzulegen.

Erstellen von MQL5-ähnlichen Handelsklassen in Python für MetaTrader 5
Das MetaTrader 5 Python-Paket bietet eine einfache Möglichkeit, Handelsanwendungen für die MetaTrader 5-Plattform in der Sprache Python zu erstellen. Obwohl dieses Modul ein leistungsstarkes und nützliches Werkzeug ist, ist es nicht so einfach wie die MQL5-Programmiersprache, wenn es darum geht, eine algorithmische Handelslösung zu erstellen. In diesem Artikel werden wir Handelsklassen erstellen, die den in MQL5 angebotenen ähnlich sind, um eine ähnliche Syntax zu schaffen und es einfacher zu machen, Handelsroboter in Python wie in MQL5 zu erstellen.

Umstellung auf MQL5 Algo Forge (Teil 1): Erstellen des Haupt-Repositorys
Bei der Arbeit an Projekten in MetaEditor stehen Entwickler oft vor der Notwendigkeit, Codeversionen zu verwalten. MetaQuotes kündigte kürzlich die Migration zu GIT und die Einführung von MQL5 Algo Forge mit Codeversionierung und Kollaborationsfunktionen an. In diesem Artikel wird erörtert, wie die neuen und bereits vorhandenen Tools effizienter genutzt werden können.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 68): Verwendung von TRIX-Mustern und des Williams Percent Range mit einem Cosinus-Kernel-Netzwerk
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar TRIX und Williams Percent Range vorstellten, und überlegen, wie dieses Indikatorpaar durch maschinelles Lernen erweitert werden kann. TRIX und Williams Percent sind ein Trend- und Unterstützungs-/Widerstandspaar, das sich gegenseitig ergänzt. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Kosinus-Kernel in seine Architektur einbezieht. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 66): Verwendung von FrAMA-Mustern und des Force Index mit dem Punktprodukt-Kernel
Der FrAMA-Indikator und der Force Index Oscillator sind Trend- und Volumeninstrumente, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem dieses Paar vorgestellt wurde, und betrachten die Anwendbarkeit des maschinellen Lernens auf dieses Paar. Wir verwenden ein neuronales Faltungsnetzwerk, das den Punkt-Produkt-Kernel bei der Erstellung von Prognosen mit den Eingaben dieser Indikatoren verwendet. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.

Nutzerdefinierte Debugging- und Profiling-Tools für die MQL5-Entwicklung (Teil I): Erweiterte Protokollierung
Lernen Sie, wie Sie ein leistungsfähiges, nutzerdefiniertes Logging-Framework für MQL5 implementieren, das über einfache Print()-Anweisungen hinausgeht, indem es Schweregrade, mehrere Output-Handler und eine automatische Dateirotation unterstützt - alles on-the-fly konfigurierbar. Integrieren Sie das Singleton CLogger mit ConsoleLogHandler und FileLogHandler, um kontextbezogene Protokolle mit Zeitstempel sowohl in der Registerkarte Experten als auch in persistenten Dateien zu erfassen. Optimieren Sie Debugging und Performance-Tracing in Ihren Expert Advisors mit klaren, anpassbaren Protokollformaten und zentraler Steuerung.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 64): Verwendung von Mustern von DeMarker und Envelope-Kanälen mit dem Kernel des weißen Rauschens
Der DeMarker-Oszillator und der Envelopes-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem diese beiden Indikatoren vorgestellt wurden, indem wir das maschinelle Lernen in den Mix aufnehmen. Wir verwenden ein rekurrentes neuronales Netz, das den Kernel des weißen Rauschens nutzt, um die vektorisierten Signale dieser beiden Indikatoren zu verarbeiten. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.

Erste Schritte mit MQL5 Algo Forge
Wir stellen die MQL5 Algo Forge vor – ein spezielles Portal für Entwickler des algorithmischem Handels. Es kombiniert die Leistungsfähigkeit von Git mit einer intuitiven Oberfläche für die Verwaltung und Organisation von Projekten innerhalb des MQL5-Ökosystems. Hier können Sie interessanten Autoren folgen, Teams bilden und an algorithmischen Handelsprojekten mitarbeiten.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 62): Nutzung der Muster von ADX und CCI mit Reinforcement-Learning TRPO
Der ADX-Oszillator und der CCI-Oszillator sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir machen dort weiter, wo wir im letzten Artikel aufgehört haben, indem wir untersuchen, wie das Training in der Praxis und die Aktualisierung unseres entwickelten Modells dank des Verstärkungslernens erfolgen kann. Wir verwenden einen Algorithmus, den wir in dieser Serie noch behandeln werden, die sogenannte Trusted Region Policy Optimization (Optimierung vertrauenswürdiger Regionen). Und wie immer erlaubt uns die Zusammenstellung von Expert Advisors durch den MQL5-Assistenten, unser(e) Modell(e) zum Testen viel schneller und auch so einzurichten, dass es mit verschiedenen Signaltypen verteilt und getestet werden kann.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XI): Modernes Merkmal Kommunikationsschnittstelle (I)
Heute konzentrieren wir uns auf die Verbesserung der Messaging-Schnittstelle des Kommunikationspanels, um sie an die Standards moderner, leistungsstarker Kommunikationsanwendungen anzupassen. Diese Verbesserung wird durch eine Aktualisierung der Klasse CommunicationsDialog erreicht. Begleiten Sie uns in diesem Artikel und in der Diskussion, wenn wir die wichtigsten Erkenntnisse erkunden und die nächsten Schritte bei der Weiterentwicklung der Schnittstellenprogrammierung mit MQL5 skizzieren.

Population ADAM (Adaptive Moment Estimation)
Der Artikel stellt die Umwandlung des bekannten und beliebten ADAM-Gradientenoptimierungsverfahrens in einen Populationsalgorithmus und dessen Modifikation durch die Einführung hybrider Individuen vor. Der neue Ansatz ermöglicht die Schaffung von Agenten, die Elemente erfolgreicher Entscheidungen mit Hilfe von Wahrscheinlichkeitsverteilungen kombinieren. Die wichtigste Innovation ist die Bildung hybrider Populationen, die adaptiv Informationen aus den vielversprechendsten Lösungen sammeln und so die Effizienz der Suche in komplexen mehrdimensionalen Räumen erhöhen.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 61): Verwendung von ADX- und CCI-Mustern mit überwachtem Lernen
Die Oszillatoren ADX und CCI sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir sehen uns an, wie dies durch die Verwendung aller 3 Haupttrainingsarten des maschinellen Lernens systematisiert werden kann. Die Wizard Assembled Expert Advisors ermöglichen es uns, die von diesen beiden Indikatoren dargestellten Muster zu bewerten, und wir beginnen damit, zu untersuchen, wie Supervised-Learning auf diese Muster angewendet werden kann.

Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge
Ein MQL5-Framework, das den Algorithmus der Ausführung auf institutionellem Niveau (TWAP, VWAP, Iceberg) über einen einheitlichen Ausführungsmanager und einen Performance-Analysator für eine reibungslosere, präzisere Auftragsaufteilung und -analyse für Einzelhändler bereitstellt.

Portfolio-Optimierung am Devisenmarkt: Synthese von VaR und die Markowitz-Theorie
Wie funktioniert der Portfoliohandel im Forexmarkt? Wie lassen sich die Portfoliotheorie von Markowitz zur Optimierung des Portfolioanteils und das VaR-Modell zur Optimierung des Portfoliorisikos zusammenführen? Wir erstellen einen auf der Portfoliotheorie basierenden Code, der einerseits ein geringes Risiko und andererseits eine akzeptable langfristige Rentabilität gewährleistet.

Algorithmischer Handel auf der Grundlage von 3D-Umkehrmustern
Die Entdeckung einer neuen Welt des automatisierten Handels mit 3D-Bars. Wie sieht ein Handelsroboter auf mehrdimensionalen Preisbalken aus? Sind „gelbe“ Cluster von 3D-Balken in der Lage, Trendumkehrungen vorherzusagen? Wie sieht der multidimensionale Handel aus?

Erstellen von 3D-Balken auf der Grundlage von Zeit, Preis und Volumen
Der Artikel befasst sich mit multivariaten Kurs-Charts in 3D und deren Erstellung. Wir werden auch untersuchen, wie 3D-Balken eine Preisumkehr vorhersagen, und wie Python und MetaTrader 5 es uns ermöglichen, diese Volumenbalken in Echtzeit darzustellen.

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)
Wir haben bereits eine ganze Reihe von Komponenten entwickelt, die bei der automatischen Optimierung helfen. Bei der Erstellung folgten wir der traditionellen zyklischen Struktur: von der Erstellung eines minimalen funktionierenden Codes bis hin zum Refactoring und dem Erhalt eines verbesserten Codes. Es ist an der Zeit, mit dem Aufräumen unserer Datenbank zu beginnen, die auch eine Schlüsselkomponente in dem von uns geschaffenen System ist.

Nichtlineare Regressionsmodelle an der Börse
Nichtlineare Regressionsmodelle an der Börse: Ist es möglich, die Finanzmärkte vorherzusagen? Betrachten wir die Erstellung eines Modells für die Vorhersage der Preise für EURUSD, und machen zwei Roboter auf der Grundlage - in Python und MQL5.

Arithmetischer Optimierungsalgorithmus (AOA): Von AOA zu SOA (Simpler Optimierungsalgorithmus)
In diesem Artikel stellen wir den Arithmetischen Optimierungsalgorithmus (AOA) vor, der auf einfachen arithmetischen Operationen basiert: Addition, Subtraktion, Multiplikation und Division. Diese grundlegenden mathematischen Operationen dienen als Grundlage für die Suche nach optimalen Lösungen für verschiedene Probleme.

Der Algorithmus Atomic Orbital Search (AOS) Modifizierung
Im zweiten Teil des Artikels werden wir die Entwicklung einer modifizierten Version des AOS-Algorithmus (Atomic Orbital Search) fortsetzen und uns dabei auf bestimmte Operatoren konzentrieren, um seine Effizienz und Anpassungsfähigkeit zu verbessern. Nach einer Analyse der Grundlagen und der Mechanik des Algorithmus werden wir Ideen zur Verbesserung seiner Leistung und seiner Fähigkeit, komplexe Lösungsräume zu analysieren, diskutieren und neue Ansätze zur Erweiterung seiner Funktionalität als Optimierungswerkzeug vorschlagen.

Die Verwendung von Assoziationsregeln in der Forex-Datenanalyse
Wie lassen sich die Vorhersageregeln der Supermarkt-Einzelhandelsanalyse auf den realen Devisenmarkt anwenden? Wie hängt der Kauf von Keksen, Milch und Brot mit Börsentransaktionen zusammen? Der Artikel behandelt einen innovativen Ansatz für den algorithmischen Handel, der auf der Verwendung von Assoziationsregeln beruht.

Analyse der Auswirkungen des Wetters auf die Währungen der Agrarländer mit Python
Welcher Zusammenhang besteht zwischen Wetter und Devisen? In der klassischen Wirtschaftstheorie wurde der Einfluss von Faktoren wie dem Wetter auf das Marktverhalten lange Zeit ignoriert. Aber alles hat sich geändert. Versuchen wir, Zusammenhänge zwischen den Witterungsbedingungen und der Stellung der Agrarwährungen auf dem Markt zu finden.

Optimierungsmethoden der ALGLIB-Bibliothek (Teil II)
In diesem Artikel werden wir die verbleibenden Optimierungsmethoden aus der ALGLIB-Bibliothek weiter untersuchen, mit besonderem Augenmerk auf deren Prüfung auf komplexe mehrdimensionale Funktionen. So können wir nicht nur die Effizienz der einzelnen Algorithmen bewerten, sondern auch ihre Stärken und Schwächen unter verschiedenen Bedingungen ermitteln.

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen
Bisher haben wir die Automatisierung des Starts von sequentiellen Verfahren zur Optimierung von EAs ausschließlich im Standard-Strategietester betrachtet. Was aber, wenn wir zwischen diesen Starts die gewonnenen Daten mit anderen Mitteln bearbeiten wollen? Wir werden versuchen, die Möglichkeit hinzuzufügen, neue Optimierungsstufen zu erstellen, die von in Python geschriebenen Programmen ausgeführt werden.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 60): Inferenzlernen (Wasserstein-VAE) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir schließen unsere Betrachtung der komplementären Paarung von MA und stochastischem Oszillator ab, indem wir untersuchen, welche Rolle das Inferenzlernen in einer Situation nach überwachtem Lernen und Verstärkungslernen spielen kann. Es gibt natürlich eine Vielzahl von Möglichkeiten, wie man in diesem Fall das Inferenzlernen angehen kann, unser Ansatz ist jedoch die Verwendung von Variationsautokodierern. Wir untersuchen dies in Python, bevor wir unser trainiertes Modell mit ONNX exportieren, um es in einem von einem Assistenten zusammengestellten Expert Advisor in MetaTrader zu verwenden.

Websockets für MetaTrader 5: Asynchrone Client-Verbindungen mit dem Windows-API
Dieser Artikel beschreibt die Entwicklung einer nutzerdefinierten, dynamisch gelinkten Bibliothek, die asynchrone Websocket-Client-Verbindungen für MetaTrader-Programme ermöglicht.

Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 1): Der Indikator
Dieser Artikel beschreibt die Erstellung eines MQL5-Systems zur Erkennung von Marktregimen unter Verwendung statistischer Methoden wie Autokorrelation und Volatilität. Es enthält Code für Klassen zur Klassifizierung von Trend-, Spannen- und Volatilitätsbedingungen sowie einen nutzerdefinierten Indikator.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil X): Externe, ressourcenbasierte Schnittstelle
Heute machen wir uns die Möglichkeiten von MQL5 zunutze, um externe Ressourcen - wie Bilder im BMP-Format - zu nutzen und eine einzigartig gestaltete Nutzeroberfläche für das Trading Administrator Panel zu erstellen. Die hier gezeigte Strategie ist besonders nützlich, wenn mehrere Ressourcen, einschließlich Bilder, Töne und mehr, für eine rationelle Verteilung zusammengefasst werden. Nehmen Sie an dieser Diskussion teil und erfahren Sie, wie diese Funktionen implementiert werden, um eine moderne und visuell ansprechende Oberfläche für unser New_Admin_Panel EA zu schaffen.

Integration des AI-Modells in eine bereits bestehende MQL5-Handelsstrategie
Dieses Thema konzentriert sich auf die Einbindung eines trainierten KI-Modells (z. B. eines Verstärkungslernmodells wie LSTM oder eines auf maschinellem Lernen basierenden Prognosemodells) in eine bestehende MQL5-Handelsstrategie.

Entwicklung eines Toolkits zur Analyse von Preisaktionen (Teil 20): Externer Fluss (IV) - Correlation Pathfinder
Der Correlation Pathfinder bietet als Teil der Serie der Entwicklung eines Toolkits zur Analyse von Preisaktionen einen neuen Ansatz zum Verständnis der Dynamik von Währungspaaren. Dieses Tool automatisiert die Datenerfassung und -analyse und bietet einen Einblick in die Wechselwirkungen zwischen Paaren wie EUR/USD und GBP/USD. Verbessern Sie Ihre Handelsstrategie mit praktischen Echtzeit-Informationen, die Ihnen helfen, Risiken zu managen und Chancen effektiver zu erkennen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 59): Verstärkungslernen (DDPG) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir setzen unseren letzten Artikel über DDPG mit MA und stochastischen Indikatoren fort, indem wir andere Schlüsselklassen des Reinforcement Learning untersuchen, die für die Implementierung von DDPG entscheidend sind. Obwohl wir hauptsächlich in Python kodieren, wird das Endprodukt, ein trainiertes Netzwerk, als ONNX nach MQL5 exportiert, wo wir es als Ressource in einen von einem Assistenten zusammengestellten Expert Advisor integrieren.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 58): Reinforcement Learning (DDPG) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Der gleitende Durchschnitt und der Stochastik-Oszillator sind sehr gebräuchliche Indikatoren, deren kollektive Muster wir im vorangegangenen Artikel mittels eines überwachten Lernnetzwerks untersucht haben, um zu sehen, welche „Muster haften bleiben“ würden. Wir gehen mit unseren Analysen aus diesem Artikel noch einen Schritt weiter, indem wir die Auswirkungen des Reinforcement Learnings auf die Leistung untersuchen, wenn es mit diesem trainierten Netz eingesetzt wird. Die Leser sollten beachten, dass sich unsere Tests auf ein sehr begrenztes Zeitfenster beziehen. Nichtsdestotrotz nutzen wir weiterhin die minimalen Programmieranforderungen, die der MQL5-Assistent bietet, um dies zu zeigen.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 57): Überwachtes Lernen mit gleitendem Durchschnitt und dem stochastischen Oszillator
Der gleitende Durchschnitt und der Stochastik-Oszillator sind sehr gängige Indikatoren, die von manchen Händlern aufgrund ihres verzögerten Charakters nicht oft verwendet werden. In einer dreiteiligen Miniserie, die sich mit den drei wichtigsten Formen des maschinellen Lernens befasst, gehen wir der Frage nach, ob die Voreingenommenheit gegenüber diesen Indikatoren gerechtfertigt ist, oder ob sie vielleicht einen Vorteil haben. Wir führen unsere Untersuchung mit Hilfe eines Assistenten durch, der Expert Advisors zusammenstellt.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (V): Die Klasse AnalyticsPanel
In dieser Diskussion wird untersucht, wie man Echtzeit-Marktdaten und Handelskontoinformationen abruft, verschiedene Berechnungen durchführt und die Ergebnisse in einem nutzerdefinierten Panel anzeigt. Um dies zu erreichen, werden wir die Entwicklung der Klasse AnalyticsPanel vertiefen, die all diese Funktionen, einschließlich der Panel-Erstellung, kapselt. Dieser Aufwand ist Teil unserer kontinuierlichen Erweiterung des New Admin Panel EA, mit der wir fortschrittliche Funktionalitäten unter Verwendung modularer Designprinzipien und Best Practices für die Codeorganisation einführen.