Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

icon

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste
preview
Vom Neuling zum Experten: Die Schatten der Kerzen enthüllen (Dochte)

Vom Neuling zum Experten: Die Schatten der Kerzen enthüllen (Dochte)

In dieser Diskussion gehen wir einen Schritt weiter, um die zugrundeliegende Preisaktion aufzudecken, die in den Dochten der Kerzen versteckt ist. Durch die Integration einer Docht-Visualisierungsfunktion in den Market Periods Synchronizer verbessern wir das Tool mit größerer analytischer Tiefe und Interaktivität. Dieses aktualisierte System ermöglicht es Händlern, Preisverwerfungen auf höheren Zeitrahmen direkt auf Charts mit niedrigerem Zeitrahmen zu visualisieren und so detaillierte Strukturen zu erkennen, die früher im Schatten verborgen waren.
preview
Neuronale Netze im Handel: Zweidimensionale Verbindungsraummodelle (letzter Teil)

Neuronale Netze im Handel: Zweidimensionale Verbindungsraummodelle (letzter Teil)

Wir erforschen weiterhin den innovativen Chimera-Rahmen – ein zweidimensionales Zustandsraummodell, das neuronale Netzwerktechnologien zur Analyse mehrdimensionaler Zeitreihen nutzt. Diese Methode bietet eine hohe Vorhersagegenauigkeit bei geringen Rechenkosten.
preview
Wie können jahrhundertealte Funktionen Ihre Handelsstrategien aktualisieren?

Wie können jahrhundertealte Funktionen Ihre Handelsstrategien aktualisieren?

Dieser Artikel befasst sich mit der Rademacher- und der Walsh-Funktion. Wir werden untersuchen, wie diese Funktionen auf die Analyse von Finanzzeitreihen angewendet werden können, und auch verschiedene Anwendungen für den Handel in Betracht ziehen.
preview
Neuronale Netze im Handel: Zweidimensionale Verbindungsraummodelle (Chimera)

Neuronale Netze im Handel: Zweidimensionale Verbindungsraummodelle (Chimera)

In diesem Artikel wird das innovative Chimera-System vorgestellt: ein zweidimensionales Zustandsraummodell, das neuronale Netze zur Analyse multivariater Zeitreihen verwendet. Diese Methode bietet eine hohe Genauigkeit bei geringen Rechenkosten und übertrifft damit traditionelle Ansätze und Transformer-Architekturen.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 24): Hinzufügen einer neuen Strategie (I)

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 24): Hinzufügen einer neuen Strategie (I)

In diesem Artikel werden wir uns ansehen, wie man eine neue Strategie mit dem von uns erstellten Auto-Optimierungssystem verbindet. Schauen wir uns an, welche Art von EAs wir erstellen müssen und ob es möglich ist, ohne Änderung der EA-Bibliotheksdateien auszukommen oder die notwendigen Änderungen zu minimieren.
preview
Neuronale Netze im Handel: Multi-Task-Lernen auf der Grundlage des ResNeXt-Modells (letzter Teil)

Neuronale Netze im Handel: Multi-Task-Lernen auf der Grundlage des ResNeXt-Modells (letzter Teil)

Wir erforschen weiterhin ein auf ResNeXt basierendes Multitasking-Lernsystem, das sich durch Modularität, hohe Recheneffizienz und die Fähigkeit, stabile Muster in Daten zu erkennen, auszeichnet. Die Verwendung eines einzigen Encoders und spezieller „Köpfe“ verringert das Risiko einer Überanpassung des Modells und verbessert die Qualität der Prognosen.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 23): Ordnung in den Ablauf automatischer Projektoptimierungsstufe bringen (II)

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 23): Ordnung in den Ablauf automatischer Projektoptimierungsstufe bringen (II)

Unser Ziel ist es, ein System zur automatischen periodischen Optimierung von Handelsstrategien zu schaffen, die in einem endgültigen EA verwendet werden. Im Laufe der Entwicklung wird das System immer komplexer, sodass es von Zeit zu Zeit in seiner Gesamtheit betrachtet werden muss, um Engpässe und suboptimale Lösungen zu ermitteln.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 22): Beginn des Übergangs zum Hot-Swapping von Einstellungen

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 22): Beginn des Übergangs zum Hot-Swapping von Einstellungen

Wenn wir die periodische Optimierung automatisieren wollen, müssen wir über automatische Aktualisierungen der Einstellungen der bereits auf dem Handelskonto laufenden EAs nachdenken. Dies sollte es uns auch ermöglichen, den EA im Strategietester laufen zu lassen und seine Einstellungen in einem einzigen Durchgang zu ändern.
preview
Neuronale Netze im Handel: Hierarchical Dual-Tower Transforme (letzter Teil)

Neuronale Netze im Handel: Hierarchical Dual-Tower Transforme (letzter Teil)

Wir setzen die Entwicklung des Modells von „Hidformer Hierarchical Dual-Tower Transformer“ fort, das für die Analyse und Vorhersage komplexer multivariater Zeitreihen entwickelt wurde. In diesem Artikel werden wir die Arbeit, die wir zuvor begonnen haben, zu einem logischen Abschluss bringen - wir werden das Modell an realen historischen Daten testen.
preview
Neuronale Netze im Handel: Hierarchischer Dual-Tower-Transformer (Hidformer)

Neuronale Netze im Handel: Hierarchischer Dual-Tower-Transformer (Hidformer)

Wir laden Sie ein, sich mit dem Hierarchical Double-Tower Transformer (Hidformer) vertraut zu machen, der für Zeitreihenprognosen und Datenanalysen entwickelt wurde. Die Autoren des Rahmenwerks schlugen mehrere Verbesserungen an der Transformer-Architektur vor, die zu einer höheren Vorhersagegenauigkeit und einem geringeren Verbrauch an Rechenressourcen führten.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 21): Vorbereitungen für ein wichtiges Experiment und Optimierung des Codes

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 21): Vorbereitungen für ein wichtiges Experiment und Optimierung des Codes

Um weitere Fortschritte zu erzielen, wäre es gut zu sehen, ob wir die Ergebnisse verbessern können, indem wir die automatische Optimierung in regelmäßigen Abständen erneut durchführen und einen neuen EA erstellen. Der Stolperstein in vielen Debatten über den Einsatz der Parameteroptimierung ist die Frage, wie lange die erhaltenen Parameter für den Handel in der Zukunft verwendet werden können, während die Rentabilität und der Drawdown auf dem vorgegebenen Niveau bleiben. Und ist das überhaupt möglich?
preview
Neuronale Netze im Handel: Speichererweitertes kontextbezogenes Lernen für Kryptowährungsmärkte (letzter Teil)

Neuronale Netze im Handel: Speichererweitertes kontextbezogenes Lernen für Kryptowährungsmärkte (letzter Teil)

Das MacroHFT-Framework für den Hochfrequenzhandel mit Kryptowährungen nutzt kontextbezogenes Verstärkungslernen und Speicher, um sich an dynamische Marktbedingungen anzupassen. Am Ende dieses Artikels werden wir die implementierten Ansätze an realen historischen Daten testen, um ihre Wirksamkeit zu bewerten.
preview
Risikomanagement (Teil 2): Implementierung der Losberechnung in einer grafischen Schnittstelle

Risikomanagement (Teil 2): Implementierung der Losberechnung in einer grafischen Schnittstelle

In diesem Artikel werden wir uns ansehen, wie man die im vorherigen Artikel vorgestellten Konzepte mit Hilfe der leistungsstarken grafischen MQL5-Bibliotheken der Steuerelemente verbessern und effektiver anwenden kann. Wir werden Schritt für Schritt durch den Prozess der Erstellung einer voll funktionsfähigen GUI gehen. Ich werde die Ideen dahinter sowie den Zweck und die Funktionsweise der einzelnen Methoden erläutern. Darüber hinaus werden wir am Ende des Artikels das von uns erstellte Panel testen, um sicherzustellen, dass es korrekt funktioniert und die angegebenen Ziele erfüllt.
preview
Neuronale Netze im Handel: Multi-Task-Lernen auf der Grundlage des ResNeXt-Modells

Neuronale Netze im Handel: Multi-Task-Lernen auf der Grundlage des ResNeXt-Modells

Ein auf ResNeXt basierendes Multi-Task-Learning-System optimiert die Analyse von Finanzdaten unter Berücksichtigung ihrer hohen Dimensionalität, Nichtlinearität und Zeitabhängigkeit. Die Verwendung von Gruppenfaltung und spezialisierten Köpfen ermöglicht es dem Modell, effektiv Schlüsselmerkmale aus den Eingabedaten zu extrahieren.
preview
Risikomanagement (Teil 1): Grundlagen für den Aufbau einer Risikomanagement-Klasse

Risikomanagement (Teil 1): Grundlagen für den Aufbau einer Risikomanagement-Klasse

In diesem Artikel befassen wir uns mit den Grundlagen des Risikomanagements beim Handel und lernen, wie man erste Funktionen zur Berechnung der geeigneten Losgröße für einen Handel sowie eines Stop-Loss erstellt. Außerdem werden wir die Funktionsweise dieser Funktionen im Detail erläutern und jeden Schritt erklären. Unser Ziel ist es, ein klares Verständnis dafür zu vermitteln, wie diese Konzepte im automatisierten Handel angewendet werden können. Schließlich werden wir alles in die Praxis umsetzen, indem wir ein einfaches Skript mit einer Include-Datei erstellen.
preview
Neuronale Netze im Handel: Speichererweitertes kontextbezogenes Lernen (MacroHFT) für Kryptowährungsmärkte

Neuronale Netze im Handel: Speichererweitertes kontextbezogenes Lernen (MacroHFT) für Kryptowährungsmärkte

Ich lade Sie ein, das MacroHFT-Framework zu erkunden, das kontextbewusstes Verstärkungslernen und eine Speicherverwendung anwendet, um Hochfrequenzhandelsentscheidungen für Kryptowährungen mithilfe von makroökonomischen Daten und adaptiven Agenten zu verbessern.
preview
Neuronale Netze im Handel: Ein Multi-Agenten-System mit konzeptioneller Verstärkung (letzter Teil)

Neuronale Netze im Handel: Ein Multi-Agenten-System mit konzeptioneller Verstärkung (letzter Teil)

Wir setzen weiterhin die von den Autoren des FinCon-Rahmens vorgeschlagenen Ansätze um. FinCon ist ein Multi-Agenten-System, das auf Large Language Models (LLMs) basiert. Heute werden wir die erforderlichen Module implementieren und umfassende Tests des Modells mit realen historischen Daten durchführen.
preview
Neuronale Netze im Handel: Ein Multi-Agenten-System mit konzeptioneller Verstärkung (FinCon)

Neuronale Netze im Handel: Ein Multi-Agenten-System mit konzeptioneller Verstärkung (FinCon)

Wir laden Sie ein, den FinCon-Rahmen zu erkunden, der ein auf einem Large Language Model (LLM) basierendes Multi-Agenten-System ist. Der Rahmen nutzt konzeptionelle verbale Verstärkung, um die Entscheidungsfindung und das Risikomanagement zu verbessern und eine effektive Leistung bei einer Vielzahl von Finanzaufgaben zu ermöglichen.
preview
Neuronale Netze im Handel: Ein multimodaler, werkzeuggestützter Agent für Finanzmärkte (letzter Teil)

Neuronale Netze im Handel: Ein multimodaler, werkzeuggestützter Agent für Finanzmärkte (letzter Teil)

Wir entwickeln weiterhin die Algorithmen für FinAgent, einen multimodalen Finanzhandelsagenten, der multimodale Marktdynamikdaten und historische Handelsmuster analysiert.
preview
Neuronale Netze im Handel: Ein multimodaler, werkzeuggestützter Agent für Finanzmärkte (FinAgent)

Neuronale Netze im Handel: Ein multimodaler, werkzeuggestützter Agent für Finanzmärkte (FinAgent)

Wir laden Sie ein, FinAgent kennenzulernen, ein multimodales Finanzhandelsagenten-Framework zur Analyse verschiedener Datentypen, die die Marktdynamik und historische Handelsmuster widerspiegeln.
preview
Neuronale Netze im Handel: Ein Agent mit geschichtetem Gedächtnis (letzter Teil)

Neuronale Netze im Handel: Ein Agent mit geschichtetem Gedächtnis (letzter Teil)

Wir setzen unsere Arbeit an der Entwicklung des Systems von FinMem fort, das mehrschichtige Speicheransätze verwendet, die menschliche kognitive Prozesse nachahmen. Dadurch kann das Modell nicht nur komplexe Finanzdaten effektiv verarbeiten, sondern sich auch an neue Signale anpassen, was die Genauigkeit und Effektivität von Anlageentscheidungen auf sich dynamisch verändernden Märkten erheblich verbessert.
preview
Einführung in MQL5 (Teil 25): Aufbau eines EAs, der mit Chart-Objekten handelt (II)

Einführung in MQL5 (Teil 25): Aufbau eines EAs, der mit Chart-Objekten handelt (II)

In diesem Artikel wird erklärt, wie man einen Expert Advisor (EA) erstellt, der mit Chart-Objekten, insbesondere Trendlinien, interagiert, um Ausbruchs- und Umkehrmöglichkeiten zu erkennen und zu handeln. Sie werden lernen, wie der EA gültige Signale bestätigt, die Handelsfrequenz verwaltet und die Konsistenz mit den vom Nutzer ausgewählten Strategien aufrechterhält.
preview
Selbstoptimierende Expert Advisors in MQL5 (Teil 16): Überwachte lineare Systemidentifikation

Selbstoptimierende Expert Advisors in MQL5 (Teil 16): Überwachte lineare Systemidentifikation

Die lineare Systemidentifikation kann mit dem Lernen gekoppelt werden, um den Fehler in einem überwachten Lernalgorithmus zu korrigieren. So können wir Anwendungen entwickeln, die von statistischen Modellierungstechniken abhängen, ohne zwangsläufig die Anfälligkeit der restriktiven Annahmen des Modells zu übernehmen. Klassische überwachte Lernalgorithmen haben viele Bedürfnisse, die durch die Kombination dieser Modelle mit einem Feedback-Controller ergänzt werden können, der das Modell korrigieren kann, um mit den aktuellen Marktbedingungen Schritt zu halten.
preview
Vom Neuling zum Experten: Hilfsprogramm zur Parametersteuerung

Vom Neuling zum Experten: Hilfsprogramm zur Parametersteuerung

Stellen Sie sich vor, Sie verwandeln die traditionellen EA- oder Indikator-Eingabeeigenschaften in eine Echtzeit-Kontrollschnittstelle auf dem Chart. Diese Diskussion baut auf unserer grundlegenden Arbeit am Market Period Synchronizer-Indikator auf und stellt eine bedeutende Entwicklung in der Art und Weise dar, wie wir Higher-Timeframe (HTF)-Marktstrukturen visualisieren und verwalten. Hier setzen wir dieses Konzept in ein vollständig interaktives Hilfsprogramm um – ein Dashboard, das eine dynamische Steuerung und eine verbesserte Visualisierung von mehrperiodigen Preisaktionen direkt auf dem Chart ermöglicht. Erkunden Sie mit uns, wie diese Innovation die Art und Weise, wie Händler mit ihren Tools interagieren, neu gestaltet.
preview
Einführung in MQL5 (Teil 24): Erstellen eines EAs, der mit Chart-Objekten handelt

Einführung in MQL5 (Teil 24): Erstellen eines EAs, der mit Chart-Objekten handelt

In diesem Artikel erfahren Sie, wie Sie einen Expert Advisor erstellen, der auf dem Chart eingezeichnete Unterstützungs- und Widerstandszonen erkennt und darauf basierend automatisch Handelsgeschäfte ausführt.
preview
Vom Neuling zum Experten: Synchronisieren der Zeitrahmen des Marktes

Vom Neuling zum Experten: Synchronisieren der Zeitrahmen des Marktes

In dieser Diskussion stellen wir ein Synchronisierungsinstrument der Zeitrahmen von länger zu kürzer vor, das das Problem der Analyse von Marktmustern lösen soll, die sich über höhere Zeitrahmen bilden. Die eingebauten Periodenmarker in MetaTrader 5 sind oft begrenzt, starr und lassen sich nicht ohne weiteres an nicht standardisierte Zeitrahmen anpassen. Unsere Lösung nutzt die MQL5-Sprache, um einen Indikator zu entwickeln, der eine dynamische und visuelle Möglichkeit bietet, Strukturen mit höherem Zeitrahmen in Charts mit niedrigerem Zeitrahmen auszurichten. Dieses Instrument kann für eine detaillierte Marktanalyse sehr wertvoll sein. Um mehr über die Funktionen und die Umsetzung zu erfahren, lade ich Sie ein, sich an der Diskussion zu beteiligen.
preview
Selbstoptimierende Expert Advisors in MQL5 (Teil 15): Identifizierung linearer Systeme

Selbstoptimierende Expert Advisors in MQL5 (Teil 15): Identifizierung linearer Systeme

Es kann schwierig sein, Handelsstrategien zu verbessern, weil wir oft nicht ganz verstehen, was die Strategie falsch macht. In dieser Diskussion führen wir die lineare Systemidentifikation ein, ein Teilgebiet der Kontrolltheorie. Lineare Rückkopplungssysteme können aus Daten lernen, um die Fehler eines Systems zu erkennen und sein Verhalten auf die gewünschten Ergebnisse auszurichten. Auch wenn diese Methoden keine vollständig interpretierbaren Erklärungen liefern, sind sie doch weitaus wertvoller, als überhaupt kein Kontrollsystem zu haben. Lassen Sie uns die Identifizierung linearer Systeme untersuchen und beobachten, wie sie uns als algorithmische Händler helfen kann, die Kontrolle über unsere Handelsanwendungen zu behalten.
preview
Der MQL5 Standard Library Explorer (Teil 2): Verbinden mit Bibliothekskomponenten

Der MQL5 Standard Library Explorer (Teil 2): Verbinden mit Bibliothekskomponenten

Heute machen wir einen wichtigen Schritt, damit jeder Entwickler versteht, wie man Klassenstrukturen liest und schnell Expert Advisors mit der MQL5-Standardbibliothek erstellt. Die Bibliothek ist reichhaltig und ausbaufähig, aber es kann sich anfühlen, als würde man ein komplexes Toolkit ohne Handbuch in die Hand bekommen. Hier wird eine alternative Integrationsroutine vorgestellt und diskutiert – ein prägnanter, wiederholbarer Arbeitsablauf, der zeigt, wie sich Klassen in realen Projekten zuverlässig verbinden lassen.
preview
Vom Neuling zum Experten: Entmystifizierung versteckter Fibonacci-Retracement-Levels

Vom Neuling zum Experten: Entmystifizierung versteckter Fibonacci-Retracement-Levels

In diesem Artikel untersuchen wir einen datengestützten Ansatz zur Ermittlung und Validierung von nicht standardmäßigen Fibonacci-Retracement-Levels, die von den Märkten möglicherweise respektiert werden. Wir stellen einen kompletten Arbeitsablauf vor, der auf die Implementierung in MQL5 zugeschnitten ist, beginnend mit der Datenerfassung und der Balken- oder Swing-Erkennung, bis hin zum Clustering, statistischen Hypothesentests, Backtesting und der Integration in ein MetaTrader 5 Fibonacci-Tool. Das Ziel ist es, eine reproduzierbare Pipeline zu erstellen, die anekdotische Beobachtungen in statistisch vertretbare Handelssignale umwandelt.
preview
Einführung in MQL5 (Teil 22): Aufbau eines Expert Advisors für das harmonische Muster 5-0

Einführung in MQL5 (Teil 22): Aufbau eines Expert Advisors für das harmonische Muster 5-0

Dieser Artikel erklärt, wie man das harmonische Muster 5-0 in MQL5 erkennt und handelt, es mit Hilfe von Fibonacci-Levels validiert und auf dem Chart anzeigt.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 85): Verwendung von Mustern des Stochastik-Oszillators und der FrAMA mit Beta-VAE-Inferenzlernen

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 85): Verwendung von Mustern des Stochastik-Oszillators und der FrAMA mit Beta-VAE-Inferenzlernen

Dieser Beitrag schließt an Teil 84 an, in dem wir die Kombination von Stochastik und Fractal Adaptive Moving Average vorgestellt haben. Wir verlagern nun den Schwerpunkt auf das Inferenzlernen, um zu sehen, ob die im letzten Artikel unterlegenen Muster eine Trendwende erfahren könnten. Der Stochastik und der FrAMA sind eine sich ergänzende Paarung von Momentum und Trend. Für unser Inferenzlernen greifen wir auf den Beta-Algorithmus eines Variational Auto Encoders zurück. Außerdem implementieren wir, wie immer, eine nutzerdefinierte Signalklasse, die für die Integration mit dem MQL5-Assistenten entwickelt wurde.
preview
Dynamic Swing Architecture: Marktstrukturerkennung von Umkehrpunkten (Swings) bis zur automatisierten Ausführung

Dynamic Swing Architecture: Marktstrukturerkennung von Umkehrpunkten (Swings) bis zur automatisierten Ausführung

In diesem Artikel wird ein vollautomatisches MQL5-System vorgestellt, mit dem sich Marktschwankungen präzise erkennen und handeln lassen. Im Gegensatz zu herkömmlichen Umkehr-Indikatoren mit festen Balken passt sich dieses System dynamisch an die sich entwickelnde Preisstruktur an und erkennt hohe und tiefe Umkehrpunkte in Echtzeit, um Richtungsgelegenheiten zu nutzen, sobald sie sich bilden.
preview
Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 4): Überwindung mehrzeiliger Eingaben, Sicherstellung der Chat-Persistenz und Generierung von Signalen

Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 4): Überwindung mehrzeiliger Eingaben, Sicherstellung der Chat-Persistenz und Generierung von Signalen

In diesem Artikel erweitern wir das in ChatGPT integrierte Programm in MQL5, indem wir die Beschränkungen bei mehrzeiligen Eingaben durch eine verbesserte Textdarstellung überwinden, eine Seitenleiste für die Navigation im persistenten Chatspeicher mit AES256-Verschlüsselung und ZIP-Komprimierung einführen und erste Handelssignale durch die Integration von Chart-Daten erzeugen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 84): Verwendung von Mustern des Stochastik-Oszillators und des FrAMA – Schlussfolgerung

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 84): Verwendung von Mustern des Stochastik-Oszillators und des FrAMA – Schlussfolgerung

Der Stochastik-Oszillator und der Fractal Adaptive Moving Average sind ein Indikatorpaar, das aufgrund seiner Fähigkeit, sich gegenseitig zu ergänzen, in einem MQL5 Expert Advisor verwendet werden kann. Wir haben diese Paarung im letzten Artikel vorgestellt und wollen nun abschließend ihre 5 letzten Signalmuster betrachten. Dabei verwenden wir wie immer den MQL5-Assistenten, um deren Potenzial zu erkunden und zu testen.
preview
Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 3): Upgrade auf eine scrollbare, auf den Einzelchat ausgerichtete Nutzeroberfläche

Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 3): Upgrade auf eine scrollbare, auf den Einzelchat ausgerichtete Nutzeroberfläche

In diesem Artikel aktualisieren wir das in ChatGPT integrierte Programm in MQL5 zu einer scrollbaren, auf einen einzelnen Chat ausgerichteten Nutzeroberfläche und verbessern die Anzeige des Gesprächsverlaufs mit Zeitstempeln und dynamischem Scrollen. Das System basiert auf JSON-Parsing, um Multi-Turn-Meldungen zu verwalten, und unterstützt anpassbare Modi der Schieberegler und Hover-Effekte für eine verbesserte Nutzerinteraktion.
preview
Wiederverwendung von ungültig gemachten Orderblöcken als Mitigation Blocks (SMC)

Wiederverwendung von ungültig gemachten Orderblöcken als Mitigation Blocks (SMC)

In diesem Artikel untersuchen wir, wie zuvor für ungültig erklärte Orderblöcke als Mitigation Blocks innerhalb von Smart Money Concepts (SMC) wiederverwendet werden können. Diese Zonen zeigen, wo institutionelle Händler nach einer fehlgeschlagenen Auftragssperre wieder in den Markt einsteigen, und bieten Bereiche mit hoher Wahrscheinlichkeit für eine Fortsetzung des Handels im vorherrschenden Trend.
preview
MQL5-Handelswerkzeuge (Teil 9): Entwicklung eines Ersteinrichtungsassistenten für Expert Advisors mit scrollbarem Leitfaden

MQL5-Handelswerkzeuge (Teil 9): Entwicklung eines Ersteinrichtungsassistenten für Expert Advisors mit scrollbarem Leitfaden

In diesem Artikel entwickeln wir einen MQL5-Erstanwender-Setup-Assistenten für Expert Advisors mit einem scrollbaren Leitfaden mit interaktivem Dashboard, dynamischer Textformatierung und visuellen Steuerelementen wie Schaltflächen und Kontrollkästchen, die es dem Anwender ermöglichen, Anweisungen zu navigieren und Handelsparameter effizient zu konfigurieren. Die Nutzer des Programms erhalten einen Einblick in die Funktionsweise des Programms und in die ersten Schritte, die sie unternehmen müssen, ähnlich wie bei einem Orientierungsmodell.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 83):  Die Verwendung von Mustern des Stochastischen Oszillators und des FrAMA – Archetypen des Verhaltens

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 83): Die Verwendung von Mustern des Stochastischen Oszillators und des FrAMA – Archetypen des Verhaltens

Der Stochastik-Oszillator und der Fractal Adaptive Moving Average sind ein weiteres Indikatorpaar, das aufgrund seiner Fähigkeit, sich in einem MQL5 Expert Advisor zu ergänzen, verwendet werden kann. Wir betrachten den Stochastik aufgrund seiner Fähigkeit, Momentumverschiebungen zu erkennen, während der FrAMA zur Bestätigung der vorherrschenden Trends verwendet wird. Bei der Erkundung dieser Indikatorenkombination verwenden wir wie immer den MQL5-Assistenten, um ihr Potenzial zu ermitteln und zu testen.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 36): Handel mit Angebot und Nachfrage mit Retest und Impulsmodell

Automatisieren von Handelsstrategien in MQL5 (Teil 36): Handel mit Angebot und Nachfrage mit Retest und Impulsmodell

In diesem Artikel erstellen wir ein Angebots- und Nachfragehandelssystem in MQL5, das Angebots- und Nachfragezonen durch Konsolidierungsbereiche identifiziert, sie mit impulsiven Bewegungen validiert und Retests mit Trendbestätigung und anpassbaren Risikoparametern handelt. Das System visualisiert die Zonen mit dynamischen Etiketten und Farben und unterstützt Trailing Stops für das Risikomanagement.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 82): Verwendung von TRIX- und WPR-Mustern mit DQN-Verstärkungslernen

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 82): Verwendung von TRIX- und WPR-Mustern mit DQN-Verstärkungslernen

Im letzten Artikel haben wir die Paarung von Ichimoku und ADX im Rahmen des Inferenzlernens untersucht. In diesem Beitrag greifen wir das Verstärkungslernen in Verbindung mit einem Indikatorpaar auf, das wir zuletzt in „Teil 68“ betrachtet haben. Der TRIX und Williams Percent Range. Unser Algorithmus für diese Überprüfung wird die Quantilregression DQN sein. Wie üblich stellen wir dies als nutzerdefinierte Signalklasse vor, die für die Implementierung mit dem MQL5-Assistenten entwickelt wurde.