Optimierungsmethoden der ALGLIB-Bibliothek (Teil II)
In diesem Artikel werden wir die verbleibenden Optimierungsmethoden aus der ALGLIB-Bibliothek weiter untersuchen, mit besonderem Augenmerk auf deren Prüfung auf komplexe mehrdimensionale Funktionen. So können wir nicht nur die Effizienz der einzelnen Algorithmen bewerten, sondern auch ihre Stärken und Schwächen unter verschiedenen Bedingungen ermitteln.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 54): Verstärkungslernen mit hybriden SAC und Tensoren
Soft Actor Critic ist ein Reinforcement Learning-Algorithmus, den wir bereits in einem früheren Artikel vorgestellt haben, in dem wir auch Python und ONNX als effiziente Ansätze für das Training von Netzwerken vorgestellt haben. Wir überarbeiten den Algorithmus mit dem Ziel, Tensoren, Berechnungsgraphen, die häufig in Python verwendet werden, zu nutzen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 62): Nutzung der Muster von ADX und CCI mit Reinforcement-Learning TRPO
Der ADX-Oszillator und der CCI-Oszillator sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir machen dort weiter, wo wir im letzten Artikel aufgehört haben, indem wir untersuchen, wie das Training in der Praxis und die Aktualisierung unseres entwickelten Modells dank des Verstärkungslernens erfolgen kann. Wir verwenden einen Algorithmus, den wir in dieser Serie noch behandeln werden, die sogenannte Trusted Region Policy Optimization (Optimierung vertrauenswürdiger Regionen). Und wie immer erlaubt uns die Zusammenstellung von Expert Advisors durch den MQL5-Assistenten, unser(e) Modell(e) zum Testen viel schneller und auch so einzurichten, dass es mit verschiedenen Signaltypen verteilt und getestet werden kann.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 72): Verwendung der Muster von MACD und OBV mit überwachtem Lernen
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar MACD und OBV vorgestellt haben, und untersuchen, wie dieses Paar durch maschinelles Lernen verbessert werden kann. MACD und OBV ergänzen sich in Bezug auf Trend und Volumen. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Exponential-Kernel bei der Dimensionierung seiner Kerne und Kanäle einsetzt. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Adaptive Social Behavior Optimization (ASBO): Das Verfahren von Schwefel und Box-Muller
Dieser Artikel bietet einen faszinierenden Einblick in die Welt des Sozialverhaltens lebender Organismen und dessen Einfluss auf die Entwicklung eines neuen mathematischen Modells - ASBO (Adaptive Social Behavior Optimization). Wir werden untersuchen, wie die in lebenden Gesellschaften beobachteten Prinzipien von Führung, Nachbarschaft und Kooperation die Entwicklung innovativer Optimierungsalgorithmen inspirieren.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 47): Verstärkungslernen mit Temporaler Differenz
Temporal Difference ist ein weiterer Algorithmus des Reinforcement Learning, der Q-Werte auf der Grundlage der Differenz zwischen vorhergesagten und tatsächlichen Belohnungen während des Agententrainings aktualisiert. Sie befasst sich speziell mit der Aktualisierung von Q-Werten, ohne sich um die Verknüpfung von Zustand und Aktion zu kümmern. Daher wollen wir sehen, wie wir dies, wie in früheren Artikeln, in einem mit einem Assistenten zusammengestellten Expert Advisor anwenden können.
Entwicklung des Price Action Analysis Toolkit (Teil 36): Direkter Python-Zugang zu MetaTrader 5 Market Streams freischalten
Schöpfen Sie das volle Potenzial Ihres MetaTrader 5 Terminals aus, indem Sie das datenwissenschaftliche Ökosystem von Python und die offizielle MetaTrader 5 Client-Bibliothek nutzen. Dieser Artikel zeigt, wie man Live-Tick- und Minutenbalken-Daten direkt in den Parquet-Speicher authentifiziert und streamt, mit Ta und Prophet ein ausgefeiltes Feature-Engineering durchführt und ein zeitabhängiges Gradient-Boosting-Modell trainiert. Anschließend setzen wir einen leichtgewichtigen Flask-Dienst ein, um Handelssignale in Echtzeit zu liefern. Egal, ob Sie ein hybrides Quant-Framework aufbauen oder Ihren EA mit maschinellem Lernen erweitern, Sie erhalten eine robuste Ende-zu-Ende-Pipeline für den datengesteuerten algorithmischen Handel an die Hand.
Neuronale Netze im Handel: Transformer für die Punktwolke (Pointformer)
In diesem Artikel geht es um Algorithmen für die Verwendung von Aufmerksamkeitsmethoden zur Lösung von Problemen bei der Erkennung von Objekten in einer Punktwolke. Die Erkennung von Objekten in Punktwolken ist für viele reale Anwendungen wichtig.
Artificial Showering Algorithm (ASHA)
Der Artikel stellt den Künstlichen Duschalgorithmus (ASHA) vor, eine neue metaheuristische Methode, die für die Lösung allgemeiner Optimierungsprobleme entwickelt wurde. Auf der Grundlage der Simulation von Wasserfluss- und Akkumulationsprozessen konstruiert dieser Algorithmus das Konzept eines idealen Feldes, in dem jede Einheit der Ressource (Wasser) aufgerufen ist, eine optimale Lösung zu finden. Wir werden herausfinden, wie ASHA Fließ- und Akkumulationsprinzipien anpasst, um Ressourcen in einem Suchraum effizient zuzuweisen, und seine Implementierung und Testergebnisse sehen.
Die Verwendung von Assoziationsregeln in der Forex-Datenanalyse
Wie lassen sich die Vorhersageregeln der Supermarkt-Einzelhandelsanalyse auf den realen Devisenmarkt anwenden? Wie hängt der Kauf von Keksen, Milch und Brot mit Börsentransaktionen zusammen? Der Artikel behandelt einen innovativen Ansatz für den algorithmischen Handel, der auf der Verwendung von Assoziationsregeln beruht.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 60): Inferenzlernen (Wasserstein-VAE) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir schließen unsere Betrachtung der komplementären Paarung von MA und stochastischem Oszillator ab, indem wir untersuchen, welche Rolle das Inferenzlernen in einer Situation nach überwachtem Lernen und Verstärkungslernen spielen kann. Es gibt natürlich eine Vielzahl von Möglichkeiten, wie man in diesem Fall das Inferenzlernen angehen kann, unser Ansatz ist jedoch die Verwendung von Variationsautokodierern. Wir untersuchen dies in Python, bevor wir unser trainiertes Modell mit ONNX exportieren, um es in einem von einem Assistenten zusammengestellten Expert Advisor in MetaTrader zu verwenden.
Neuronale Netze im Handel: Knotenadaptive Graphendarstellung mit NAFS
Wir laden Sie ein, sich mit der NAFS-Methode (Node-Adaptive Feature Smoothing) vertraut zu machen, einem nicht-parametrischen Ansatz zur Erstellung von Knotenrepräsentationen, der kein Parametertraining erfordert. NAFS extrahiert Merkmale jedes Knotens anhand seiner Nachbarn und kombiniert diese Merkmale dann adaptiv, um eine endgültige Darstellung zu erstellen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 66): Verwendung von FrAMA-Mustern und des Force Index mit dem Punktprodukt-Kernel
Der FrAMA-Indikator und der Force Index Oscillator sind Trend- und Volumeninstrumente, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem dieses Paar vorgestellt wurde, und betrachten die Anwendbarkeit des maschinellen Lernens auf dieses Paar. Wir verwenden ein neuronales Faltungsnetzwerk, das den Punkt-Produkt-Kernel bei der Erstellung von Prognosen mit den Eingaben dieser Indikatoren verwendet. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 8): Analyse mehrerer Strategien
Wie können wir mehrere Strategien am besten kombinieren, um eine leistungsfähige Gesamtstrategie zu schaffen? Nehmen Sie an dieser Diskussion teil, in der wir drei verschiedene Strategien in unsere Handelsanwendung einbauen wollen. Händler verwenden oft spezielle Strategien für die Eröffnung und Schließung von Positionen, und wir wollen wissen, ob unsere Maschinen diese Aufgabe besser erfüllen können. In unserer einleitenden Diskussion machen wir uns mit den Fähigkeiten des Strategietesters und den Prinzipien der OOP vertraut, die wir für diese Aufgabe benötigen.
Adaptive Social Behavior Optimization (ASBO): Zweiphasige Entwicklung
Wir beschäftigen uns weiterhin mit dem Thema des Sozialverhaltens von Lebewesen und dessen Auswirkungen auf die Entwicklung eines neuen mathematischen Modells - ASBO (Adaptive Social Behavior Optimization). Wir werden uns mit der zweiphasigen Entwicklung befassen, den Algorithmus testen und Schlussfolgerungen ziehen. So wie sich in der Natur eine Gruppe von Lebewesen zusammenschließt, um zu überleben, nutzt ASBO die Prinzipien des kollektiven Verhaltens, um komplexe Optimierungsprobleme zu lösen.
Time Evolution Travel Algorithm (TETA)
Dies ist mein eigener Algorithmus. Der Artikel stellt den Time Evolution Travel Algorithm (TETA) vor, der vom Konzept der Paralleluniversen und Zeitströme inspiriert ist. Der Grundgedanke des Algorithmus ist, dass wir, obwohl Zeitreisen im herkömmlichen Sinne unmöglich sind, eine Abfolge von Ereignissen wählen können, die zu unterschiedlichen Realitäten führen.
Neuronales Netz in der Praxis: Pseudoinverse (II)
Da es sich bei diesen Artikeln um Lehrmaterial handelt und sie nicht dazu gedacht sind, die Implementierung bestimmter Funktionen zu zeigen, werden wir in diesem Artikel ein wenig anders vorgehen. Anstatt zu zeigen, wie man die Faktorisierung anwendet, um die Inverse einer Matrix zu erhalten, werden wir uns auf die Faktorisierung der Pseudoinverse konzentrieren. Der Grund dafür ist, dass es keinen Sinn macht, zu zeigen, wie man den allgemeinen Koeffizienten erhält, wenn man es auf eine spezielle Weise tun kann. Noch besser: Der Leser kann ein tieferes Verständnis dafür entwickeln, warum die Dinge so geschehen, wie sie geschehen. Lassen Sie uns nun herausfinden, warum die Hardware die Software im Laufe der Zeit ersetzt.
Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)
Die effiziente Extraktion und Integration von langfristigen Abhängigkeiten und kurzfristigen Merkmalen ist nach wie vor eine wichtige Aufgabe bei der Zeitreihenanalyse. Ihr richtiges Verständnis und ihre Integration sind notwendig, um genaue und zuverlässige Prognosemodelle zu erstellen.
Neuronale Netze im Handel: Kontrollierte Segmentierung
In diesem Artikel wird eine Methode zur Analyse komplexer multimodaler Interaktionen und zum Verstehen von Merkmalen erörtert.
Algorithmus der Atomic Orbital Search (AOS)
Der Artikel befasst sich mit dem Algorithmus der atomare Orbitalsuche (AOS), der die Konzepte des atomaren Orbitalmodells nutzt, um die Suche nach Lösungen zu simulieren. Der Algorithmus basiert auf Wahrscheinlichkeitsverteilungen und der Dynamik von Wechselwirkungen im Atom. In dem Artikel werden die mathematischen Aspekte von AOS im Detail erörtert, einschließlich der Aktualisierung der Positionen der Lösungsvorschläge und der Mechanismen der Energieaufnahme und -abgabe. AOS eröffnet neue Horizonte für die Anwendung von Quantenprinzipien auf Computerprobleme, indem es einen innovativen Ansatz zur Optimierung bietet.
Neuronale Netze im Handel: Verbesserung des Wirkungsgrads der Transformer durch Verringerung der Schärfe (letzter Teil)
SAMformer bietet eine Lösung für die wichtigsten Nachteile von Transformer-Modellen in der langfristigen Zeitreihenprognose, wie z. B. die Komplexität des Trainings und die schlechte Generalisierung auf kleinen Datensätzen. Die flache Architektur und die auf Schärfe ausgerichtete Optimierung helfen, suboptimale lokale Minima zu vermeiden. In diesem Artikel werden wir die Umsetzung von Ansätzen mit MQL5 fortsetzen und ihren praktischen Wert bewerten.
Datenwissenschaft und ML (Teil 33): Pandas Dataframe in MQL5, Vereinfachung der Datensammlung für ML-Nutzung
Bei der Arbeit mit maschinellen Lernmodellen ist es wichtig, die Konsistenz der für Training, Validierung und Tests verwendeten Daten sicherzustellen. In diesem Artikel werden wir unsere eigene Version der Pandas-Bibliothek in MQL5 erstellen, um einen einheitlichen Ansatz für den Umgang mit maschinellen Lerndaten zu gewährleisten und sicherzustellen, dass innerhalb und außerhalb von MQL5, wo der Großteil des Trainings stattfindet, dieselben Daten verwendet werden.
Datenwissenschaft und ML (Teil 34): Zeitreihenzerlegung, den Aktienmarkt auf den Kern herunterbrechen.
In einer Welt, die von verrauschten und unvorhersehbaren Daten überschwemmt wird, kann es schwierig sein, aussagekräftige Muster zu erkennen. In diesem Artikel befassen wir uns mit der saisonalen Dekomposition, einer leistungsstarken Analysetechnik, die dabei hilft, Daten in ihre Hauptkomponenten zu zerlegen: Trend, saisonale Muster und Rauschen. Wenn wir die Daten auf diese Weise aufschlüsseln, können wir verborgene Erkenntnisse aufdecken und mit klareren, besser interpretierbaren Informationen arbeiten.
Klassische Strategien neu interpretieren (Teil 14): Hochwahrscheinliche Setups
Hochwahrscheinliche Setups sind in unserer Trading-Community gut bekannt, aber leider sind sie nicht gut definiert. In diesem Artikel wollen wir einen empirischen und algorithmischen Weg finden, um genau zu definieren, was ein Hochwahrscheinlichkeits-Setup ist, und um diese zu identifizieren und auszunutzen. Durch die Verwendung von Gradient Boosting Trees haben wir gezeigt, wie der Leser die Leistung einer beliebigen Handelsstrategie verbessern und unserem Computer die genaue Aufgabe auf sinnvollere und explizitere Weise mitteilen kann.
Selbstoptimierende Expert Advisors in MQL5 (Teil 8): Analyse mehrerer Strategien (2)
Nehmen Sie an unserer Folgediskussion teil, in der wir unsere ersten beiden Handelsstrategien zu einer Gesamthandelsstrategie zusammenführen werden. Wir werden die verschiedenen Schemata demonstrieren, die für die Kombination mehrerer Strategien möglich sind, und wir werden auch zeigen, wie man den Parameterraum kontrollieren kann, um sicherzustellen, dass eine effektive Optimierung möglich bleibt, selbst wenn unsere Parametergröße wächst.
Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends
Der Artikel untersucht die Möglichkeit, die Preisprognose auf der Grundlage der Analyse des Handelsvolumens zu verbessern, indem die Prinzipien der technischen Analyse mit der Architektur des neuronalen Netzes LSTM integriert werden. Besonderes Augenmerk wird auf die Erkennung und Interpretation anomaler Volumina, die Verwendung von Clustern und die Erstellung von Merkmalen auf der Grundlage von Volumina und deren Definition im Rahmen des maschinellen Lernens gelegt.
Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)
Der LSEAttention-Rahmen bietet Verbesserungen der Transformer-Architektur. Es wurde speziell für langfristige multivariate Zeitreihenprognosen entwickelt. Die von den Autoren der Methode vorgeschlagenen Ansätze können angewandt werden, um Probleme des Entropiekollapses und der Lerninstabilität zu lösen, die bei einem einfachen Transformer häufig auftreten.
Neuronales Netz in der Praxis: Das erste Neuron
In diesem Artikel beginnen wir damit, etwas Einfaches und Bescheidenes zu bauen: ein Neuron. Wir werden es mit einer sehr kleinen Menge an MQL5-Code programmieren. Das Neuron hat in meinen Tests hervorragend funktioniert. Gehen wir in dieser Artikelserie über neuronale Netze ein wenig zurück, um zu verstehen, wovon ich spreche.
Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose
Wir untersuchen weiterhin Modelle zur Zeitreihenprognose. In diesem Artikel machen wir uns mit einem komplexen Algorithmus vertraut, der auf der Verwendung eines vortrainierten Sprachmodells basiert.
Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)
Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.
Arithmetischer Optimierungsalgorithmus (AOA): Von AOA zu SOA (Simpler Optimierungsalgorithmus)
In diesem Artikel stellen wir den Arithmetischen Optimierungsalgorithmus (AOA) vor, der auf einfachen arithmetischen Operationen basiert: Addition, Subtraktion, Multiplikation und Division. Diese grundlegenden mathematischen Operationen dienen als Grundlage für die Suche nach optimalen Lösungen für verschiedene Probleme.
Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)
Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.
Die Grenzen des maschinellen Lernens überwinden (Teil 1): Mangel an interoperablen Metriken
Es gibt eine mächtige und allgegenwärtige Kraft, die die kollektiven Bemühungen unserer Gemeinschaft, verlässliche Handelsstrategien zu entwickeln, die KI in irgendeiner Form einsetzen, leise untergräbt. In diesem Artikel wird festgestellt, dass ein Teil der Probleme, mit denen wir konfrontiert sind, auf das blinde Festhalten an „Best Practices“ zurückzuführen ist. Indem wir dem Leser einfache marktbasierte Beweise aus der realen Welt vorlegen, werden wir ihm erklären, warum wir von einem solchen Verhalten absehen und stattdessen bereichsgebundene „Best Practices“ anwenden müssen, wenn unsere Gemeinschaft eine Chance haben soll, das latente Potenzial der KI zu nutzen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 64): Verwendung von Mustern von DeMarker und Envelope-Kanälen mit dem Kernel des weißen Rauschens
Der DeMarker-Oszillator und der Envelopes-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem diese beiden Indikatoren vorgestellt wurden, indem wir das maschinelle Lernen in den Mix aufnehmen. Wir verwenden ein rekurrentes neuronales Netz, das den Kernel des weißen Rauschens nutzt, um die vektorisierten Signale dieser beiden Indikatoren zu verarbeiten. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Die Grenzen des maschinellen Lernens überwinden (Teil 2): Mangelnde Reproduzierbarkeit
Der Artikel geht der Frage nach, warum die Handelsergebnisse bei verschiedenen Brokern selbst bei Verwendung derselben Strategie und desselben Finanzsymbols aufgrund dezentraler Preisfestsetzung und Datenabweichungen erheblich voneinander abweichen können. Der Artikel hilft MQL5-Entwicklern zu verstehen, warum ihre Produkte auf dem MQL5-Marktplatz gemischte Bewertungen erhalten können, und fordert die Entwickler auf, ihre Ansätze auf bestimmte Makler zuzuschneiden, um transparente und reproduzierbare Ergebnisse zu gewährleisten. Dies könnte sich zu einer wichtigen bereichsgebundenen Best Practice entwickeln, die unserer Gemeinschaft gute Dienste leisten würde, wenn sie auf breiter Ebene übernommen würde.
Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken
Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.
Neuronale Netze im Handel: Der Contrastive Muster-Transformer
Der Contrastive Transformer wurde entwickelt, um Märkte sowohl auf der Ebene einzelner Kerzen als auch auf der Basis ganzer Muster zu analysieren. Dies trägt dazu bei, die Qualität der Modellierung von Markttrends zu verbessern. Darüber hinaus fördert der Einsatz des kontrastiven Lernens zum Abgleich der Darstellungen von Kerzen und Mustern die Selbstregulierung und verbessert die Genauigkeit der Prognosen.
Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)
In der vorangegangenen Arbeit haben wir die theoretischen Aspekte des PSformer-Rahmens erörtert, der zwei wichtige Neuerungen in der klassischen Transformer-Architektur beinhaltet: den Parameter-Shared (PS)-Mechanismus und die Berücksichtigung von räumlich-zeitlichen Segmenten (SegAtt). In diesem Artikel setzen wir die Arbeit fort, die wir bei der Implementierung der vorgeschlagenen Ansätze mit MQL5 begonnen haben.
Evolutionärer Handelsalgorithmus mit Verstärkungslernen und Auslöschung von schwachen Individuen (ETARE)
In diesem Artikel stelle ich einen innovativen Handelsalgorithmus vor, der evolutionäre Algorithmen mit Deep Reinforcement Learning für den Devisenhandel kombiniert. Der Algorithmus nutzt den Mechanismus der Auslöschung ineffizienter Individuen zur Optimierung der Handelsstrategie.
Wechselseitige Information als Kriterium für die schrittweise Auswahl von Merkmalen
In diesem Artikel stellen wir eine MQL5-Implementierung der schrittweisen Merkmalsauswahl vor, die auf der wechselseitigen Information zwischen einer optimalen Prädiktorenmenge und einer Zielvariablen basiert.