Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Индикатор CAPM модели на рынке Forex

Индикатор CAPM модели на рынке Forex

Адаптация классической модели CAPM для валютного рынка Forex в MQL5. Индикатор рассчитывает ожидаемую доходность и премию за риск на основе исторической волатильности. Показатели возрастают на пиках и впадинах, отражая фундаментальные принципы ценообразования. Практическое применение для контртрендовых и трендовых стратегий с учетом динамики соотношения риска и доходности в реальном времени. Включает математический аппарат и техническую реализацию.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Темп обучения — это размер шага к цели обучения во многих алгоритмах машинного обучения. В статье мы изучим, какое влияние многочисленные форматы могут оказать на производительность генеративно-состязательной сети (Generative Adversarial Network, GAN) — разновидности нейронной сети, которую мы рассмотрели в одной из предыдущих статей.
preview
Алгоритм успешного ресторатора —  Successful Restaurateur Algorithm (SRA)

Алгоритм успешного ресторатора — Successful Restaurateur Algorithm (SRA)

Алгоритм успешного ресторатора (SRA) — инновационный метод оптимизации, вдохновленный принципами управления ресторанным бизнесом. В отличие от традиционных подходов, SRA не отбрасывает слабые решения, а улучшает их, комбинируя с элементами успешных. Алгоритм показывает конкурентоспособные результаты и предлагает свежий взгляд на балансирование между исследованием и эксплуатацией в задачах оптимизации.
preview
Алгоритм хаотической оптимизации  — Chaos optimization algorithm (COA)

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA)

Усовершенствованный алгоритм хаотической оптимизации (COA), объединяющий воздействие хаоса с адаптивными механизмами поиска. Алгоритм использует множество хаотических отображений и инерционные компоненты для исследования пространства поиска. Статья раскрывает теоретические основы хаотических методов финансовой оптимизации.
preview
Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Метод BOA, вдохновленный классической игрой в бильярд, моделирует процесс поиска оптимальных решений, как игру с шарами, стремящимися попасть в лузы, олицетворяющие наилучшие результаты. В данной статье мы рассмотрим основы работы BOA, его математическую модель и эффективность в решении различных оптимизационных задач.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Мы завершаем рассмотрение чувствительности темпа обучения к производительности советников изучением адаптируемых темпов обучения. Темпы должны быть настроены для каждого параметра в слое в процессе обучения, поэтому нам необходимо оценить потенциальные преимущества по сравнению с ожидаемыми потерями производительности.
preview
Майнинг данных CFTC на Python и ИИ модель на их основе

Майнинг данных CFTC на Python и ИИ модель на их основе

Попробуем смайнить даные CFTC, загрузить отчеты COT и TFF через Python, соединить это с котировками MetaTrader 5 и моделью ИИ и получить прогнозы. Что такое отчеты COT на рынке Форекс? Как использовать отчеты COT и TFF для прогнозирования?
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь

Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь

Функция потерь (Loss Function) — это ключевая метрика алгоритмов машинного обучения, которая обеспечивает обратную связь для процесса обучения, количественно определяя, насколько хорошо данный набор параметров работает по сравнению с предполагаемым целевым значением. Мы рассмотрим различные форматы этой функции в пользовательском классе Мастера MQL5.
preview
Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Алгоритм Deterministic Oscillatory Search (DOS) — инновационный метод глобальной оптимизации, сочетающий преимущества градиентных и роевых алгоритмов без использования случайных чисел. Механизм осцилляций и наклонов фитнеса позволяет DOS исследовать сложные пространства поиска детерминированным методом.
preview
Оптимизация наследованием крови — Blood inheritance optimization (BIO)

Оптимизация наследованием крови — Blood inheritance optimization (BIO)

Представляю вашему вниманию мой новый популяционный алгоритм оптимизации BIO (Blood Inheritance Optimization), вдохновленный системой наследования групп крови человека. В этом алгоритме каждое решение имеет свою "группу крови", определяющую способ его эволюции. Как и в природе, группа крови ребенка наследуется по особым правилам, в BIO новые решения получают свои характеристики через систему наследования и мутаций.
preview
Алгоритм эволюционного путешествия во времени — Time Evolution Travel Algorithm (TETA)

Алгоритм эволюционного путешествия во времени — Time Evolution Travel Algorithm (TETA)

Мой авторский алгоритм. В этой статье представлен Алгоритм Эволюционного Путешествия во Времени (TETA), вдохновлённый концепцией параллельных вселенных и потоков времени. Основная идея алгоритма заключается в том, что, хотя путешествие во времени в привычном понимании невозможно, мы можем выбирать последовательность событий, которые приводят к различным реальностям.
preview
Алгоритм поиска по кругу — Circle Search Algorithm (CSA)

Алгоритм поиска по кругу — Circle Search Algorithm (CSA)

В статье представлен новый метаэвристический алгоритм оптимизации CSA (Circle Search Algorithm), основанный на геометрических свойствах окружности. Алгоритм использует принцип движения точек по касательным для поиска оптимального решения, сочетая фазы глобального исследования и локальной эксплуатации.
preview
Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Нейросети в трейдинге: Фреймворк кросс-доменного прогнозирования временных рядов (Окончание)

Статья посвящена практическому построению модели TimeFound для прогнозирования временных рядов. Рассматриваются ключевые этапы реализации основных подходов фреймворка средствами MQL5.
preview
Оптимизация хаотичной игрой — Chaos Game Optimization (CGO)

Оптимизация хаотичной игрой — Chaos Game Optimization (CGO)

Представляем новый метаэвристический алгоритм Chaos Game Optimization (CGO), демонстрирующий уникальную способность сохранять высокую эффективность при работе с задачами большой размерности. В отличие от большинства оптимизационных алгоритмов, CGO не только не теряет, но иногда даже увеличивает производительность при масштабировании задачи, что является его ключевой особенностью.
preview
Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)

Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)

В данной статье рассмотрим новый популяционный алгоритм оптимизации CPA (Cyclic Parthenogenesis Algorithm), вдохновленный уникальной репродуктивной стратегией тлей. Алгоритм сочетает два механизма размножения — партеногенез и половое, а также использует колониальную структуру популяции с возможностью миграции между колониями. Ключевыми особенностями алгоритма являются адаптивное переключение между различными стратегиями размножения и система обмена информацией между колониями через механизм перелета.
preview
Оптимизация нейробоидами — Neuroboids Optimization Algorithm (NOA)

Оптимизация нейробоидами — Neuroboids Optimization Algorithm (NOA)

Новая авторская биоинспирированная метаэвристика оптимизации — NOA (Neuroboids Optimization Algorithm), объединяющая принципы коллективного интеллекта и нейронных сетей. В отличие от классических методов, алгоритм использует популяцию самообучающихся "нейробоидов", каждый с собственной нейросетью, адаптирующей стратегию поиска в реальном времени. Статья раскрывает архитектуру алгоритма, механизмы самообучения агентов и перспективы применения этого гибридного подхода в сложных задачах оптимизации.
preview
Ординальное кодирование номинальных переменных

Ординальное кодирование номинальных переменных

В настоящей статье мы обсудим и продемонстрируем, как преобразовать номинальные предикторы в числовые форматы, подходящие для алгоритмов машинного обучения, используя как Python, так и MQL5.
preview
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Time-MoE)

Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Time-MoE)

Предлагаем познакомиться с современным фреймворком Time-MoE, адаптированным под задачи прогнозирования временных рядов. В статье мы пошагово реализуем ключевые компоненты архитектуры, сопровождая их объяснениями и практическими примерами. Такой подход позволит вам не только понять принципы работы модели, но и применить их в реальных торговых задачах.
preview
Инженерия признаков с Python и MQL5 (Часть I): AI-модели для долгосрочного прогнозирования по скользящим средним

Инженерия признаков с Python и MQL5 (Часть I): AI-модели для долгосрочного прогнозирования по скользящим средним

Скользящие средние являются, безусловно, самыми эффективными индикаторами для прогнозирования моделями ИИ. Однако точность результатов можно еще больше повысить, если перед этим соответственным образом преобразовать данные. В этой статье мы поговорим о создании AI-моделей, которые могут прогнозировать в более отдаленное будущее без существенного снижения уровня точности. В очередной раз мы с вами убедимся, насколько полезны скользящие средние.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 45): Обучение с подкреплением с помощью метода Монте-Карло

Возможности Мастера MQL5, которые вам нужно знать (Часть 45): Обучение с подкреплением с помощью метода Монте-Карло

Монте-Карло — четвертый алгоритм обучения с подкреплением, который мы рассматриваем в контексте его реализации в советниках, собранных с помощью Мастера. Хотя алгоритм основан на случайной выборке, он предоставляет обширные возможности моделирования.
preview
Оптимизация на основе биогеографии — Biogeography-Based Optimization (BBO)

Оптимизация на основе биогеографии — Biogeography-Based Optimization (BBO)

Оптимизация на основе биогеографии (BBO) — элегантный метод глобальной оптимизации, вдохновленный природными процессами миграции видов между островами архипелагов. В основе алгоритма лежит простая, но мощная идея: решения с высоким качеством активно делятся своими характеристиками, решения низкого качества активно заимствуют новые черты, создавая естественный поток информации от лучших решений к худшим. Уникальный адаптивный оператор мутации, обеспечивает превосходный баланс между исследованием и эксплуатацией, BBO демонстрирует высокую эффективность на различных задачах.
preview
Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 1): Введение в GAN и синтетические данные в сфере финансового моделирования

Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 1): Введение в GAN и синтетические данные в сфере финансового моделирования

Настоящая статья знакомит трейдеров с Генеративно-состязательными сетями (GAN) для генерации Синтетических финансовых данных, устраняя ограничения данных в процессе обучения модели. В ней рассматриваются основы GAN, реализация кода на python и MQL5, а также практическое применение в финансовой сфере, позволяющее трейдерам повысить точность и надежность моделей с помощью синтетических данных.
preview
Поэтапный отбор признаков на MQL5

Поэтапный отбор признаков на MQL5

В этой статье мы представляем модифицированную версию поэтапного отбора признаков, реализованную в MQL5. Настоящий подход основан на методах, описанных Тимоти Мастерсом (Timothy Masters) в работе "Современных алгоритмах интеллектуального анализа данных на C++" и "CUDA C".
preview
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Предлагаем познакомиться с практической реализацией блока разреженной смеси экспертов для временных рядов в вычислительной среде OpenCL. В статье шаг за шагом разбирается работа маскированной многооконной свёртки, а также организация градиентного обучения в условиях множественных информационных потоков.